-
Notifications
You must be signed in to change notification settings - Fork 3.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[MetaSchedule][M4a] Rewrite-Cooperative-Fetch #10081
Merged
spectrometerHBH
merged 1 commit into
apache:main
from
Hzfengsy:rewrite-cooperative-fetch
Jan 29, 2022
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
34 changes: 34 additions & 0 deletions
34
python/tvm/meta_schedule/postproc/rewrite_cooperative_fetch.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
"""A postprocessor that rewrites the cooperative fetch annotation to actual | ||
vectorized cooperative fetching in loop bindings.""" | ||
|
||
from tvm._ffi.registry import register_object | ||
from .. import _ffi_api | ||
from .postproc import Postproc | ||
|
||
|
||
@register_object("meta_schedule.RewriteCooperativeFetch") | ||
class RewriteCooperativeFetch(Postproc): | ||
"""A postprocessor that rewrites the cooperative fetch annotation to actual vectorized | ||
cooperative fetching in loop bindings. | ||
""" | ||
|
||
def __init__(self) -> None: | ||
self.__init_handle_by_constructor__( | ||
_ffi_api.PostprocRewriteCooperativeFetch, # type: ignore # pylint: disable=no-member | ||
) |
156 changes: 156 additions & 0 deletions
156
src/meta_schedule/postproc/rewrite_cooperative_fetch.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
#include "../utils.h" | ||
|
||
namespace tvm { | ||
namespace tir { | ||
|
||
/*! | ||
* \brief Parse instruction: sch.bind(..., axis) | ||
* \param sch The schedule | ||
* \param inst The instruction to be parsed | ||
* \param axis The axis name expected | ||
* \return NullOpt if parsing fails; Otherwise, the extent of thread axis | ||
*/ | ||
Optional<Integer> ParseThreadBinding(const Schedule& sch, const Instruction& inst, String axis) { | ||
static InstructionKind inst_kind_bind = InstructionKind::Get("Bind"); | ||
if (!inst->kind.same_as(inst_kind_bind)) { | ||
return NullOpt; | ||
} | ||
ICHECK_EQ(inst->inputs.size(), 1); | ||
ICHECK_EQ(inst->attrs.size(), 1); | ||
String thread_axis = Downcast<String>(inst->attrs[0]); | ||
if (thread_axis != axis) { | ||
return NullOpt; | ||
} | ||
return Downcast<Integer>(sch->Get(Downcast<LoopRV>(inst->inputs[0]))->extent); | ||
} | ||
|
||
/*! | ||
* \brief Parse instruction: sch.annotate(..., attr::meta_schedule_cooperative_fetch) | ||
* \param sch The schedule | ||
* \param inst The instruction to be parsed | ||
* \param vector_lane The number of vector lane in vectorized cooperative fetching | ||
* \return NullOpt if parsing fails; Otherwise, the annotated block | ||
*/ | ||
Optional<BlockRV> ParseAnnotate(const Schedule& sch, const Instruction& inst, int* vector_lane) { | ||
static InstructionKind inst_kind_annotate = InstructionKind::Get("Annotate"); | ||
if (!inst->kind.same_as(inst_kind_annotate)) { | ||
return NullOpt; | ||
} | ||
ICHECK_EQ(inst->inputs.size(), 2); | ||
ICHECK_EQ(inst->attrs.size(), 1); | ||
String ann_key = Downcast<String>(inst->attrs[0]); | ||
if (ann_key != attr::meta_schedule_cooperative_fetch) { | ||
return NullOpt; | ||
} | ||
*vector_lane = Downcast<Integer>(sch->Get(Downcast<ExprRV>(inst->inputs[1])))->value; | ||
return Downcast<BlockRV>(inst->inputs[0]); | ||
} | ||
|
||
} // namespace tir | ||
|
||
namespace meta_schedule { | ||
|
||
/*! | ||
* \brief Rewrite the cooperative fetch annotation to actual vectorized cooperative fetching | ||
* in loop bindings. | ||
*/ | ||
class RewriteCooperativeFetchNode : public PostprocNode { | ||
public: | ||
// Inherited from PostprocNode | ||
void InitializeWithTuneContext(const TuneContext& context) final {} | ||
// Inherited from PostprocNode | ||
bool Apply(const tir::Schedule& sch) final; | ||
|
||
void VisitAttrs(tvm::AttrVisitor* v) {} | ||
|
||
static constexpr const char* _type_key = "meta_schedule.RewriteCooperativeFetch"; | ||
TVM_DECLARE_FINAL_OBJECT_INFO(RewriteCooperativeFetchNode, PostprocNode); | ||
}; | ||
|
||
bool RewriteCooperativeFetchNode::Apply(const tir::Schedule& sch) { | ||
tir::Trace trace = sch->trace().value(); | ||
int thread_extent_x = -1; | ||
int thread_extent_y = -1; | ||
int vector_lane = -1; | ||
std::vector<std::function<void()>> tasks; | ||
for (const tir::Instruction& inst : trace->insts) { | ||
if (Optional<Integer> new_thread_extent = tir::ParseThreadBinding(sch, inst, "threadIdx.x")) { | ||
thread_extent_x = new_thread_extent.value()->value; | ||
} else if (Optional<Integer> new_thread_extent = | ||
tir::ParseThreadBinding(sch, inst, "threadIdx.y")) { | ||
thread_extent_y = new_thread_extent.value()->value; | ||
} else if (Optional<tir::BlockRV> block_rv = tir::ParseAnnotate(sch, inst, &vector_lane)) { | ||
ICHECK_NE(thread_extent_x, -1); | ||
if (vector_lane > 1) { | ||
tasks.push_back([thread_extent_x, thread_extent_y, vector_lane, sch, | ||
block = block_rv.value()]() -> void { | ||
tir::LoopRV fused = sch->GetLoops(block).back(); | ||
if (thread_extent_y == -1) { | ||
Array<tir::LoopRV> split = sch->Split(fused, {NullOpt, // | ||
Integer(thread_extent_x), // | ||
Integer(vector_lane)}); | ||
sch->Vectorize(split[2]); | ||
sch->Bind(split[1], "threadIdx.x"); | ||
} else { | ||
Array<tir::LoopRV> split = sch->Split(fused, {NullOpt, // | ||
Integer(thread_extent_y), // | ||
Integer(thread_extent_x), // | ||
Integer(vector_lane)}); | ||
sch->Vectorize(split[3]); | ||
sch->Bind(split[2], "threadIdx.x"); | ||
sch->Bind(split[1], "threadIdx.y"); | ||
} | ||
}); | ||
} else { | ||
tasks.push_back( | ||
[thread_extent_x, thread_extent_y, sch, block = block_rv.value()]() -> void { | ||
tir::LoopRV fused = sch->GetLoops(block).back(); | ||
if (thread_extent_y == -1) { | ||
Array<tir::LoopRV> split = sch->Split(fused, {NullOpt, Integer(thread_extent_x)}); | ||
sch->Bind(split[1], "threadIdx.x"); | ||
} else { | ||
Array<tir::LoopRV> split = sch->Split(fused, {NullOpt, // | ||
Integer(thread_extent_y), // | ||
Integer(thread_extent_x)}); | ||
sch->Bind(split[2], "threadIdx.x"); | ||
sch->Bind(split[1], "threadIdx.y"); | ||
} | ||
}); | ||
} | ||
} | ||
} | ||
for (auto&& task : tasks) { | ||
task(); | ||
} | ||
return true; | ||
} | ||
|
||
Postproc Postproc::RewriteCooperativeFetch() { | ||
ObjectPtr<RewriteCooperativeFetchNode> n = make_object<RewriteCooperativeFetchNode>(); | ||
return Postproc(n); | ||
} | ||
|
||
TVM_REGISTER_NODE_TYPE(RewriteCooperativeFetchNode); | ||
TVM_REGISTER_GLOBAL("meta_schedule.PostprocRewriteCooperativeFetch") | ||
.set_body_typed(Postproc::RewriteCooperativeFetch); | ||
|
||
} // namespace meta_schedule | ||
} // namespace tvm |
155 changes: 155 additions & 0 deletions
155
tests/python/unittest/test_meta_schedule_postproc_rewrite_cooperative_fetch.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint: disable=missing-module-docstring,missing-function-docstring,missing-class-docstring | ||
|
||
import tvm | ||
from tvm import tir | ||
from tvm.meta_schedule import TuneContext | ||
from tvm.meta_schedule.postproc import RewriteCooperativeFetch | ||
from tvm.meta_schedule.testing import te_workload | ||
from tvm.script import tir as T | ||
from tvm.target import Target | ||
from tvm.te import create_prim_func | ||
|
||
|
||
def _target() -> Target: | ||
return Target("cuda", host="llvm") | ||
|
||
|
||
def _create_context(mod, target) -> TuneContext: | ||
ctx = TuneContext( | ||
mod=mod, | ||
target=target, | ||
postprocs=[ | ||
RewriteCooperativeFetch(), | ||
], | ||
task_name="test", | ||
) | ||
for rule in ctx.postprocs: | ||
rule.initialize_with_tune_context(ctx) | ||
return ctx | ||
|
||
|
||
# fmt: off | ||
# pylint: disable=no-member,invalid-name,unused-variable,no-self-argument,line-too-long,chained-comparison,not-callable,too-many-nested-blocks | ||
|
||
@tvm.script.ir_module | ||
class AfterRewrite0: | ||
@T.prim_func | ||
def main(var_A: T.handle, var_B: T.handle, var_C: T.handle) -> None: | ||
# function attr dict | ||
T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
A = T.match_buffer(var_A, [512, 512], dtype="float32") | ||
B = T.match_buffer(var_B, [512, 512], dtype="float32") | ||
C = T.match_buffer(var_C, [512, 512], dtype="float32") | ||
# body | ||
# with T.block("root") | ||
C_local = T.alloc_buffer([512, 512], dtype="float32", scope="local") | ||
A_shared = T.alloc_buffer([512, 512], dtype="float32", scope="shared") | ||
B_shared = T.alloc_buffer([512, 512], dtype="float32", scope="shared") | ||
for i0_0_i1_0_fused in T.thread_binding(0, 16, thread="blockIdx.x"): | ||
for i0_1_i1_1_fused in T.thread_binding(0, 16, thread="vthread.x"): | ||
for i0_2_i1_2_fused in T.thread_binding(0, 8, thread="threadIdx.x"): | ||
for i2_0 in T.serial(0, 1): | ||
for ax0_ax1_fused_0 in T.serial(0, 32768): | ||
for ax0_ax1_fused_1 in T.thread_binding(0, 8, thread="threadIdx.x"): | ||
with T.block("A_shared"): | ||
v0 = T.axis.spatial(512, (ax0_ax1_fused_0 * 8 + ax0_ax1_fused_1) // 512) | ||
v1 = T.axis.spatial(512, (ax0_ax1_fused_0 * 8 + ax0_ax1_fused_1) % 512) | ||
T.reads([A[v0, v1]]) | ||
T.writes([A_shared[v0, v1]]) | ||
T.block_attr({"meta_schedule.cooperative_fetch":1}) | ||
A_shared[v0, v1] = A[v0, v1] | ||
for ax0_ax1_fused_0 in T.serial(0, 1024): | ||
for ax0_ax1_fused_1 in T.thread_binding(0, 8, thread="threadIdx.x"): | ||
for ax0_ax1_fused_2 in T.vectorized(0, 2): | ||
with T.block("B_shared"): | ||
v0 = T.axis.spatial(512, (ax0_ax1_fused_0 * 16 + ax0_ax1_fused_1 * 2 + ax0_ax1_fused_2) // 32) | ||
v1 = T.axis.spatial(512, i0_0_i1_0_fused * 32 + (ax0_ax1_fused_0 * 16 + ax0_ax1_fused_1 * 2 + ax0_ax1_fused_2) % 32) | ||
T.reads([B[v0, v1]]) | ||
T.writes([B_shared[v0, v1]]) | ||
T.block_attr({"meta_schedule.cooperative_fetch":2}) | ||
B_shared[v0, v1] = B[v0, v1] | ||
for i2_1, i0_3, i1_3, i2_2, i0_4, i1_4 in T.grid(16, 2, 2, 32, 16, 2): | ||
with T.block("C"): | ||
i = T.axis.spatial(512, i0_1_i1_1_fused * 32 + i0_3 * 16 + i0_4) | ||
j = T.axis.spatial(512, i0_0_i1_0_fused * 32 + i0_2_i1_2_fused * 4 + i1_3 * 2 + i1_4) | ||
k = T.axis.reduce(512, i2_1 * 32 + i2_2) | ||
T.reads([C_local[i, j], A_shared[i, k], B_shared[k, j]]) | ||
T.writes([C_local[i, j]]) | ||
with T.init(): | ||
C_local[i, j] = T.float32(0) | ||
C_local[i, j] = C_local[i, j] + A_shared[i, k] * B_shared[k, j] | ||
for ax0, ax1 in T.grid(32, 4): | ||
with T.block("C_local"): | ||
v0 = T.axis.spatial(512, i0_1_i1_1_fused * 32 + ax0) | ||
v1 = T.axis.spatial(512, i0_0_i1_0_fused * 32 + i0_2_i1_2_fused * 4 + ax1) | ||
T.reads([C_local[v0, v1]]) | ||
T.writes([C[v0, v1]]) | ||
C[v0, v1] = C_local[v0, v1] | ||
|
||
|
||
# pylint: enable=no-member,invalid-name,unused-variable,no-self-argument,line-too-long,chained-comparison,not-callable,too-many-nested-blocks | ||
# fmt: on | ||
|
||
|
||
def test_rewrite_cooperative_fetch(): | ||
mod = create_prim_func(te_workload.matmul(n=512, m=512, k=512)) | ||
target = _target() | ||
ctx = _create_context(mod, target) | ||
|
||
sch = tir.Schedule(mod, debug_mask="all") | ||
# fmt: off | ||
# pylint: disable=line-too-long,invalid-name | ||
b0 = sch.get_block(name="C", func_name="main") | ||
b1 = sch.cache_write(block=b0, write_buffer_index=0, storage_scope="local") | ||
l2, l3, l4 = sch.get_loops(block=b0) | ||
v5, v6, v7, v8, v9 = sch.sample_perfect_tile(loop=l2, n=5, max_innermost_factor=64, decision=[1, 16, 1, 2, 16]) | ||
l10, l11, l12, l13, l14 = sch.split(loop=l2, factors=[v5, v6, v7, v8, v9]) | ||
v15, v16, v17, v18, v19 = sch.sample_perfect_tile(loop=l3, n=5, max_innermost_factor=64, decision=[16, 1, 8, 2, 2]) | ||
l20, l21, l22, l23, l24 = sch.split(loop=l3, factors=[v15, v16, v17, v18, v19]) | ||
v25, v26, v27 = sch.sample_perfect_tile(loop=l4, n=3, max_innermost_factor=64, decision=[1, 16, 32]) | ||
l28, l29, l30 = sch.split(loop=l4, factors=[v25, v26, v27]) | ||
sch.reorder(l10, l20, l11, l21, l12, l22, l28, l29, l13, l23, l30, l14, l24) | ||
l31 = sch.fuse(l10, l20) | ||
sch.bind(loop=l31, thread_axis="blockIdx.x") | ||
l32 = sch.fuse(l11, l21) | ||
sch.bind(loop=l32, thread_axis="vthread.x") | ||
l33 = sch.fuse(l12, l22) | ||
sch.bind(loop=l33, thread_axis="threadIdx.x") | ||
b34 = sch.cache_read(block=b0, read_buffer_index=1, storage_scope="shared") | ||
sch.compute_at(block=b34, loop=l28, preserve_unit_loops=True) | ||
_, _, _, _, l39, l40 = sch.get_loops(block=b34) | ||
l41 = sch.fuse(l39, l40) | ||
_, v43 = sch.sample_perfect_tile(loop=l41, n=2, max_innermost_factor=4, decision=[262144, 1]) | ||
sch.annotate(block_or_loop=b34, ann_key="meta_schedule.cooperative_fetch", ann_val=v43) | ||
b44 = sch.cache_read(block=b0, read_buffer_index=2, storage_scope="shared") | ||
sch.compute_at(block=b44, loop=l28, preserve_unit_loops=True) | ||
_, _, _, _, l49, l50 = sch.get_loops(block=b44) | ||
l51 = sch.fuse(l49, l50) | ||
_, v53 = sch.sample_perfect_tile(loop=l51, n=2, max_innermost_factor=4, decision=[8192, 2]) | ||
sch.annotate(block_or_loop=b44, ann_key="meta_schedule.cooperative_fetch", ann_val=v53) | ||
sch.reverse_compute_at(block=b1, loop=l33, preserve_unit_loops=True) | ||
# pylint: enable=line-too-long,invalid-name | ||
# fmt: on | ||
sch.enter_postproc() | ||
assert ctx.postprocs[0].apply(sch) | ||
tvm.ir.assert_structural_equal(sch.mod, AfterRewrite0) | ||
|
||
|
||
if __name__ == "__main__": | ||
test_rewrite_cooperative_fetch() |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
is this check necessary here? I am hitting this check with a simple
matmul_fp16
example with rules and postprocs like intest_meta_schedule_tune_tir
and I wonder if more details about this check can be elaborated here.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
it means
threadIdx.x
isn't bound in previous instructions, which isn't supposed to happen (and that's why it's an ICHECK instead of CHECK). Could you check thetrace->insts
and see whythreadIdx.x
doesn't exist previously