Skip to content

Commit

Permalink
[MetaSchedule] Random Feature Extractor (#9760)
Browse files Browse the repository at this point in the history
Co-authored-by: Junru Shao <junrushao1994@gmail.com>
Co-authored-by: Bohan Hou <32121147+spectrometerHBH@users.noreply.github.com>
Co-authored-by: Ruihang Lai <lairuihangdongdong@qq.com>
Co-authored-by: Hongyi Jin <3231950289@qq.com>
Co-authored-by: Wuwei Lin <wuwei@apache.org>
Co-authored-by: Siyuan Feng <Hzfengsy@sjtu.edu.cn>

Co-authored-by: Bohan Hou <32121147+spectrometerHBH@users.noreply.github.com>
Co-authored-by: Ruihang Lai <lairuihangdongdong@qq.com>
Co-authored-by: Hongyi Jin <3231950289@qq.com>
Co-authored-by: Wuwei Lin <wuwei@apache.org>
Co-authored-by: Siyuan Feng <Hzfengsy@sjtu.edu.cn>
  • Loading branch information
6 people authored Dec 17, 2021
1 parent a374cdd commit e1255c9
Show file tree
Hide file tree
Showing 16 changed files with 1,137 additions and 3 deletions.
182 changes: 182 additions & 0 deletions include/tvm/meta_schedule/cost_model.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,182 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

#ifndef TVM_META_SCHEDULE_COST_MODEL_H_
#define TVM_META_SCHEDULE_COST_MODEL_H_

#include <tvm/meta_schedule/search_strategy.h>

#include <vector>

namespace tvm {
namespace meta_schedule {

class TuneContext;

/*! \brief Cost model. */
class CostModelNode : public runtime::Object {
public:
/*! \brief Virtual destructor. */
virtual ~CostModelNode() = default;

void VisitAttrs(tvm::AttrVisitor* v) {}

/*!
* \brief Load the cost model from given file location.
* \param path The file path.
*/
virtual void Load(const String& path) = 0;

/*!
* \brief Save the cost model to given file location.
* \param path The file path.
*/
virtual void Save(const String& path) = 0;

/*!
* \brief Update the cost model given running results.
* \param tune_context The tuning context.
* \param candidates The measure candidates.
* \param results The running results of the measure candidates.
*/
virtual void Update(const TuneContext& tune_context, const Array<MeasureCandidate>& candidates,
const Array<RunnerResult>& results) = 0;

/*!
* \brief Predict the normalized score (the larger the better) of given measure candidates.
* \param tune_context The tuning context.
* \param candidates The measure candidates.
* \return The predicted normalized score.
*/
virtual std::vector<double> Predict(const TuneContext& tune_context,
const Array<MeasureCandidate>& candidates) = 0;

static constexpr const char* _type_key = "meta_schedule.CostModel";
TVM_DECLARE_BASE_OBJECT_INFO(CostModelNode, Object);
};

/*! \brief The cost model with customized methods on the python-side. */
class PyCostModelNode : public CostModelNode {
public:
/*!
* \brief Load the cost model from given file location.
* \param path The file path.
*/
using FLoad = runtime::TypedPackedFunc<void(String)>;
/*!
* \brief Save the cost model to given file location.
* \param path The file path.
*/
using FSave = runtime::TypedPackedFunc<void(String)>;
/*!
* \brief Update the cost model given running results.
* \param tune_context The tuning context.
* \param candidates The measure candidates.
* \param results The running results of the measure candidates.
* \return Whether cost model was updated successfully.
*/
using FUpdate = runtime::TypedPackedFunc<void(const TuneContext&, const Array<MeasureCandidate>&,
const Array<RunnerResult>&)>;
/*!
* \brief Predict the running results of given measure candidates.
* \param tune_context The tuning context.
* \param candidates The measure candidates.
* \param p_addr The address to save the the estimated running results.
*/
using FPredict = runtime::TypedPackedFunc<void(const TuneContext&, const Array<MeasureCandidate>&,
void* p_addr)>;
/*!
* \brief Get the cost model as string with name.
* \return The string representation of the cost model.
*/
using FAsString = runtime::TypedPackedFunc<String()>;

/*! \brief The packed function to the `Load` function. */
FLoad f_load;
/*! \brief The packed function to the `Save` function. */
FSave f_save;
/*! \brief The packed function to the `Update` function. */
FUpdate f_update;
/*! \brief The packed function to the `Predict` function. */
FPredict f_predict;
/*! \brief The packed function to the `AsString` function. */
FAsString f_as_string;

void VisitAttrs(tvm::AttrVisitor* v) {
// `f_load` is not visited
// `f_save` is not visited
// `f_update` is not visited
// `f_predict` is not visited
// `f_as_string` is not visited
}

void Load(const String& path) {
ICHECK(f_load != nullptr) << "PyCostModel's Load method not implemented!";
f_load(path);
}

void Save(const String& path) {
ICHECK(f_save != nullptr) << "PyCostModel's Save method not implemented!";
f_save(path);
}
void Update(const TuneContext& tune_context, const Array<MeasureCandidate>& candidates,
const Array<RunnerResult>& results) {
ICHECK(f_update != nullptr) << "PyCostModel's Update method not implemented!";
f_update(tune_context, candidates, results);
}

std::vector<double> Predict(const TuneContext& tune_context,
const Array<MeasureCandidate>& candidates) {
ICHECK(f_predict != nullptr) << "PyCostModel's Predict method not implemented!";
std::vector<double> result(candidates.size(), 0.0);
f_predict(tune_context, candidates, result.data());
return result;
}

static constexpr const char* _type_key = "meta_schedule.PyCostModel";
TVM_DECLARE_FINAL_OBJECT_INFO(PyCostModelNode, CostModelNode);
};

/*!
* \brief Managed reference to CostModelNode
* \sa CostModelNode
*/
class CostModel : public runtime::ObjectRef {
public:
/*!
* \brief Create a feature extractor with customized methods on the python-side.
* \param f_load The packed function of `Load`.
* \param f_save The packed function of `Save`.
* \param f_update The packed function of `Update`.
* \param f_predict The packed function of `Predict`.
* \param f_as_string The packed function of `AsString`.
* \return The feature extractor created.
*/
TVM_DLL static CostModel PyCostModel(PyCostModelNode::FLoad f_load, //
PyCostModelNode::FSave f_save, //
PyCostModelNode::FUpdate f_update, //
PyCostModelNode::FPredict f_predict, //
PyCostModelNode::FAsString f_as_string);
TVM_DEFINE_MUTABLE_OBJECT_REF_METHODS(CostModel, ObjectRef, CostModelNode);
};

} // namespace meta_schedule
} // namespace tvm

#endif // TVM_META_SCHEDULE_COST_MODEL_H_
121 changes: 121 additions & 0 deletions include/tvm/meta_schedule/feature_extractor.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

#ifndef TVM_META_SCHEDULE_FEATURE_EXTRACTOR_H_
#define TVM_META_SCHEDULE_FEATURE_EXTRACTOR_H_

#include <tvm/meta_schedule/search_strategy.h>

namespace tvm {
namespace meta_schedule {

class TuneContext;

/*! \brief Extractor for features from measure candidates for use in cost model. */
class FeatureExtractorNode : public runtime::Object {
public:
/*! \brief Virtual destructor. */
virtual ~FeatureExtractorNode() = default;

void VisitAttrs(tvm::AttrVisitor* v) {}

/*!
* \brief Extract features from the given measure candidate.
* \param tune_context The tuning context for feature extraction.
* \param candidates The measure candidates to extract features from.
* \return The feature ndarray extracted.
*/
virtual Array<tvm::runtime::NDArray> ExtractFrom(const TuneContext& tune_context,
const Array<MeasureCandidate>& candidates) = 0;

static constexpr const char* _type_key = "meta_schedule.FeatureExtractor";
TVM_DECLARE_BASE_OBJECT_INFO(FeatureExtractorNode, Object);
};

/*! \brief The feature extractor with customized methods on the python-side. */
class PyFeatureExtractorNode : public FeatureExtractorNode {
public:
/*!
* \brief Extract features from the given measure candidate.
* \param tune_context The tuning context for feature extraction.
* \param candidates The measure candidates to extract features from.
* \return The feature ndarray extracted.
*/
using FExtractFrom = runtime::TypedPackedFunc<Array<tvm::runtime::NDArray>(
const TuneContext& tune_context, const Array<MeasureCandidate>& candidates)>;
/*!
* \brief Get the feature extractor as string with name.
* \return The string of the feature extractor.
*/
using FAsString = runtime::TypedPackedFunc<String()>;

/*! \brief The packed function to the `ExtractFrom` function. */
FExtractFrom f_extract_from;
/*! \brief The packed function to the `AsString` function. */
FAsString f_as_string;

void VisitAttrs(tvm::AttrVisitor* v) {
// `f_extract_from` is not visited
// `f_as_string` is not visited
}

Array<tvm::runtime::NDArray> ExtractFrom(const TuneContext& tune_context,
const Array<MeasureCandidate>& candidates) {
ICHECK(f_extract_from != nullptr) << "PyFeatureExtractor's ExtractFrom method not implemented!";
return f_extract_from(tune_context, candidates);
}

static constexpr const char* _type_key = "meta_schedule.PyFeatureExtractor";
TVM_DECLARE_FINAL_OBJECT_INFO(PyFeatureExtractorNode, FeatureExtractorNode);
};

/*!
* \brief Managed reference to FeatureExtractorNode
* \sa FeatureExtractorNode
*/
class FeatureExtractor : public runtime::ObjectRef {
public:
/*!
* \brief Create a feature extractor that extracts features from each BufferStore
* \param buffers_per_store The number of buffers in each BufferStore; Pad or truncate if
* necessary.
* \param arith_intensity_curve_num_samples The number of samples used in the arithmetic intensity
* curve.
* \param cache_line_bytes The number of bytes in a cache line.
* \return The feature extractor created.
*/
TVM_DLL static FeatureExtractor PerStoreFeature(int buffers_per_store = 5,
int arith_intensity_curve_num_samples = 10,
int cache_line_bytes = 64);
/*!
* \brief Create a feature extractor with customized methods on the python-side.
* \param f_extract_from The packed function of `ExtractFrom`.
* \param f_as_string The packed function of `AsString`.
* \return The feature extractor created.
*/
TVM_DLL static FeatureExtractor PyFeatureExtractor(
PyFeatureExtractorNode::FExtractFrom f_extract_from,
PyFeatureExtractorNode::FAsString f_as_string);
TVM_DEFINE_MUTABLE_OBJECT_REF_METHODS(FeatureExtractor, ObjectRef, FeatureExtractorNode);
};

} // namespace meta_schedule
} // namespace tvm

#endif // TVM_META_SCHEDULE_FEATURE_EXTRACTOR_H_
21 changes: 21 additions & 0 deletions python/tvm/meta_schedule/cost_model/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
The tvm.meta_schedule.cost_model package.
"""
from .cost_model import CostModel, PyCostModel
from .random_model import RandomModel
Loading

0 comments on commit e1255c9

Please sign in to comment.