-
Notifications
You must be signed in to change notification settings - Fork 3.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[MetaSchedule] postproc: rewrite_cooperative_fetch
Co-authored-by: Junru Shao <junrushao1994@gmail.com> Co-authored-by: Xiyou Zhou <xiyou@octoml.ai> Co-authored-by: Bohan Hou <32121147+spectrometerHBH@users.noreply.github.com> Co-authored-by: Ruihang Lai <lairuihangdongdong@qq.com> Co-authored-by: Hongyi Jin <3231950289@qq.com> Co-authored-by: Wuwei Lin <wuwei@apache.org>
- Loading branch information
1 parent
fa317ed
commit ce52b56
Showing
4 changed files
with
348 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
34 changes: 34 additions & 0 deletions
34
python/tvm/meta_schedule/postproc/rewrite_cooperative_fetch.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
"""A postprocessor that rewrites the cooperative fetch annotation to actual | ||
vectorized cooperative fetching in loop bindings.""" | ||
|
||
from tvm._ffi.registry import register_object | ||
from .. import _ffi_api | ||
from .postproc import Postproc | ||
|
||
|
||
@register_object("meta_schedule.RewriteCooperativeFetch") | ||
class RewriteCooperativeFetch(Postproc): | ||
"""A postprocessor that rewrites the cooperative fetch annotation to actual vectorized | ||
cooperative fetching in loop bindings. | ||
""" | ||
|
||
def __init__(self) -> None: | ||
self.__init_handle_by_constructor__( | ||
_ffi_api.PostprocRewriteCooperativeFetch, # type: ignore # pylint: disable=no-member | ||
) |
158 changes: 158 additions & 0 deletions
158
src/meta_schedule/postproc/rewrite_cooperative_fetch.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,158 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
#include "../utils.h" | ||
|
||
namespace tvm { | ||
namespace tir { | ||
|
||
/*! | ||
* \brief Parse instruction: sch.bind(..., axis) | ||
* \param sch The schedule | ||
* \param inst The instruction to be parsed | ||
* \param axis The axis name expected | ||
* \return NullOpt if parsing fails; Otherwise, the extent of thread axis | ||
*/ | ||
Optional<Integer> ParseThreadBinding(const Schedule& sch, const Instruction& inst, String axis) { | ||
static InstructionKind inst_kind_bind = InstructionKind::Get("Bind"); | ||
if (!inst->kind.same_as(inst_kind_bind)) { | ||
return NullOpt; | ||
} | ||
ICHECK_EQ(inst->inputs.size(), 1); | ||
ICHECK_EQ(inst->attrs.size(), 1); | ||
String thread_axis = Downcast<String>(inst->attrs[0]); | ||
if (thread_axis != axis) { | ||
return NullOpt; | ||
} | ||
return Downcast<Integer>(sch->Get(Downcast<LoopRV>(inst->inputs[0]))->extent); | ||
} | ||
|
||
/*! | ||
* \brief Parse instruction: sch.annotate(..., attr::meta_schedule_cooperative_fetch) | ||
* \param sch The schedule | ||
* \param inst The instruction to be parsed | ||
* \param vector_lane The length of vector lane in vectorized cooperative fetching | ||
* \return NullOpt if parsing fails; Otherwise, the annotated block | ||
*/ | ||
Optional<BlockRV> ParseAnnotate(const Schedule& sch, const Instruction& inst, int* vector_lane) { | ||
static InstructionKind inst_kind_annotate = InstructionKind::Get("Annotate"); | ||
if (!inst->kind.same_as(inst_kind_annotate)) { | ||
return NullOpt; | ||
} | ||
ICHECK_EQ(inst->inputs.size(), 2); | ||
ICHECK_EQ(inst->attrs.size(), 1); | ||
String ann_key = Downcast<String>(inst->attrs[0]); | ||
if (ann_key != attr::meta_schedule_cooperative_fetch) { | ||
return NullOpt; | ||
} | ||
*vector_lane = Downcast<Integer>(sch->Get(Downcast<ExprRV>(inst->inputs[1])))->value; | ||
return Downcast<BlockRV>(inst->inputs[0]); | ||
} | ||
|
||
} // namespace tir | ||
|
||
namespace meta_schedule { | ||
|
||
/*! | ||
* \brief Rewrite the cooperative fetch annotation to actual vectorized cooperative fetching | ||
* in loop bindings. | ||
*/ | ||
class RewriteCooperativeFetchNode : public PostprocNode { | ||
public: | ||
// Inherited from PostprocNode | ||
void InitializeWithTuneContext(const TuneContext& context) final {} | ||
// Inherited from PostprocNode | ||
bool Apply(const tir::Schedule& sch) final; | ||
|
||
void VisitAttrs(tvm::AttrVisitor* v) {} | ||
|
||
static constexpr const char* _type_key = "meta_schedule.RewriteCooperativeFetch"; | ||
TVM_DECLARE_FINAL_OBJECT_INFO(RewriteCooperativeFetchNode, PostprocNode); | ||
}; | ||
|
||
bool RewriteCooperativeFetchNode::Apply(const tir::Schedule& sch) { | ||
tir::Trace trace = sch->trace().value(); | ||
int thread_extent_x = -1; | ||
int thread_extent_y = -1; | ||
int vector_lane = -1; | ||
std::vector<std::function<void()>> tasks; | ||
for (const tir::Instruction& inst : trace->insts) { | ||
if (Optional<Integer> new_thread_extent = tir::ParseThreadBinding(sch, inst, "threadIdx.x")) { | ||
thread_extent_x = new_thread_extent.value()->value; | ||
} else if (Optional<Integer> new_thread_extent = | ||
tir::ParseThreadBinding(sch, inst, "threadIdx.y")) { | ||
thread_extent_y = new_thread_extent.value()->value; | ||
} else if (Optional<tir::BlockRV> block_rv = tir::ParseAnnotate(sch, inst, &vector_lane)) { | ||
ICHECK_NE(thread_extent_x, -1); | ||
if (vector_lane > 1) { | ||
tasks.push_back([thread_extent_x, thread_extent_y, vector_lane, sch, | ||
block = block_rv.value()]() -> void { | ||
tir::LoopRV fused = sch->GetLoops(block).back(); | ||
if (thread_extent_y == -1) { | ||
Array<tir::LoopRV> split = sch->Split(fused, {NullOpt, // | ||
Integer(thread_extent_x), // | ||
Integer(vector_lane)}); | ||
sch->Vectorize(split[2]); | ||
sch->Bind(split[1], "threadIdx.x"); | ||
} else { | ||
Array<tir::LoopRV> split = sch->Split(fused, {NullOpt, // | ||
Integer(thread_extent_y), // | ||
Integer(thread_extent_x), // | ||
Integer(vector_lane)}); | ||
sch->Vectorize(split[3]); | ||
sch->Bind(split[2], "threadIdx.x"); | ||
sch->Bind(split[1], "threadIdx.y"); | ||
sch->StorageAlign(block, 0, -2, 32, 8); | ||
} | ||
}); | ||
} else { | ||
tasks.push_back( | ||
[thread_extent_x, thread_extent_y, sch, block = block_rv.value()]() -> void { | ||
tir::LoopRV fused = sch->GetLoops(block).back(); | ||
if (thread_extent_y == -1) { | ||
Array<tir::LoopRV> split = sch->Split(fused, {NullOpt, Integer(thread_extent_x)}); | ||
sch->Bind(split[1], "threadIdx.x"); | ||
} else { | ||
Array<tir::LoopRV> split = sch->Split(fused, {NullOpt, // | ||
Integer(thread_extent_y), // | ||
Integer(thread_extent_x)}); | ||
sch->Bind(split[2], "threadIdx.x"); | ||
sch->Bind(split[1], "threadIdx.y"); | ||
sch->StorageAlign(block, 0, -2, 32, 8); | ||
} | ||
}); | ||
} | ||
} | ||
} | ||
for (auto&& task : tasks) { | ||
task(); | ||
} | ||
return true; | ||
} | ||
|
||
Postproc Postproc::RewriteCooperativeFetch() { | ||
ObjectPtr<RewriteCooperativeFetchNode> n = make_object<RewriteCooperativeFetchNode>(); | ||
return Postproc(n); | ||
} | ||
|
||
TVM_REGISTER_NODE_TYPE(RewriteCooperativeFetchNode); | ||
TVM_REGISTER_GLOBAL("meta_schedule.PostprocRewriteCooperativeFetch") | ||
.set_body_typed(Postproc::RewriteCooperativeFetch); | ||
|
||
} // namespace meta_schedule | ||
} // namespace tvm |
155 changes: 155 additions & 0 deletions
155
tests/python/unittest/test_meta_schedule_postproc_rewrite_cooperative_fetch.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint: disable=missing-module-docstring,missing-function-docstring,missing-class-docstring | ||
|
||
import tvm | ||
from tvm import tir | ||
from tvm.meta_schedule import TuneContext | ||
from tvm.meta_schedule.postproc import RewriteCooperativeFetch | ||
from tvm.meta_schedule.testing import te_workload | ||
from tvm.script import tir as T | ||
from tvm.target import Target | ||
from tvm.te import create_prim_func | ||
|
||
|
||
def _target() -> Target: | ||
return Target("cuda", host="llvm") | ||
|
||
|
||
def _create_context(mod, target) -> TuneContext: | ||
ctx = TuneContext( | ||
mod=mod, | ||
target=target, | ||
postprocs=[ | ||
RewriteCooperativeFetch(), | ||
], | ||
task_name="test", | ||
) | ||
for rule in ctx.postprocs: | ||
rule.initialize_with_tune_context(ctx) | ||
return ctx | ||
|
||
|
||
# fmt: off | ||
# pylint: disable=no-member,invalid-name,unused-variable,no-self-argument,line-too-long,chained-comparison,not-callable,too-many-nested-blocks | ||
|
||
@tvm.script.ir_module | ||
class AfterRewrite0: | ||
@T.prim_func | ||
def main(var_A: T.handle, var_B: T.handle, var_C: T.handle) -> None: | ||
# function attr dict | ||
T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
A = T.match_buffer(var_A, [512, 512], dtype="float32") | ||
B = T.match_buffer(var_B, [512, 512], dtype="float32") | ||
C = T.match_buffer(var_C, [512, 512], dtype="float32") | ||
# body | ||
# with T.block("root") | ||
C_local = T.alloc_buffer([512, 512], dtype="float32", scope="local") | ||
A_shared = T.alloc_buffer([512, 512], dtype="float32", scope="shared") | ||
B_shared = T.alloc_buffer([512, 512], dtype="float32", scope="shared") | ||
for i0_0_i1_0_fused in T.thread_binding(0, 16, thread="blockIdx.x"): | ||
for i0_1_i1_1_fused in T.thread_binding(0, 16, thread="vthread.x"): | ||
for i0_2_i1_2_fused in T.thread_binding(0, 8, thread="threadIdx.x"): | ||
for i2_0 in T.serial(0, 1): | ||
for ax0_ax1_fused_0 in T.serial(0, 32768): | ||
for ax0_ax1_fused_1 in T.thread_binding(0, 8, thread="threadIdx.x"): | ||
with T.block("A_shared"): | ||
v0 = T.axis.spatial(512, (ax0_ax1_fused_0 * 8 + ax0_ax1_fused_1) // 512) | ||
v1 = T.axis.spatial(512, (ax0_ax1_fused_0 * 8 + ax0_ax1_fused_1) % 512) | ||
T.reads([A[v0, v1]]) | ||
T.writes([A_shared[v0, v1]]) | ||
T.block_attr({"meta_schedule.cooperative_fetch":1}) | ||
A_shared[v0, v1] = A[v0, v1] | ||
for ax0_ax1_fused_0 in T.serial(0, 1024): | ||
for ax0_ax1_fused_1 in T.thread_binding(0, 8, thread="threadIdx.x"): | ||
for ax0_ax1_fused_2 in T.vectorized(0, 2): | ||
with T.block("B_shared"): | ||
v0 = T.axis.spatial(512, (ax0_ax1_fused_0 * 16 + ax0_ax1_fused_1 * 2 + ax0_ax1_fused_2) // 32) | ||
v1 = T.axis.spatial(512, i0_0_i1_0_fused * 32 + (ax0_ax1_fused_0 * 16 + ax0_ax1_fused_1 * 2 + ax0_ax1_fused_2) % 32) | ||
T.reads([B[v0, v1]]) | ||
T.writes([B_shared[v0, v1]]) | ||
T.block_attr({"meta_schedule.cooperative_fetch":2}) | ||
B_shared[v0, v1] = B[v0, v1] | ||
for i2_1, i0_3, i1_3, i2_2, i0_4, i1_4 in T.grid(16, 2, 2, 32, 16, 2): | ||
with T.block("C"): | ||
i = T.axis.spatial(512, i0_1_i1_1_fused * 32 + i0_3 * 16 + i0_4) | ||
j = T.axis.spatial(512, i0_0_i1_0_fused * 32 + i0_2_i1_2_fused * 4 + i1_3 * 2 + i1_4) | ||
k = T.axis.reduce(512, i2_1 * 32 + i2_2) | ||
T.reads([C_local[i, j], A_shared[i, k], B_shared[k, j]]) | ||
T.writes([C_local[i, j]]) | ||
with T.init(): | ||
C_local[i, j] = T.float32(0) | ||
C_local[i, j] = C_local[i, j] + A_shared[i, k] * B_shared[k, j] | ||
for ax0, ax1 in T.grid(32, 4): | ||
with T.block("C_local"): | ||
v0 = T.axis.spatial(512, i0_1_i1_1_fused * 32 + ax0) | ||
v1 = T.axis.spatial(512, i0_0_i1_0_fused * 32 + i0_2_i1_2_fused * 4 + ax1) | ||
T.reads([C_local[v0, v1]]) | ||
T.writes([C[v0, v1]]) | ||
C[v0, v1] = C_local[v0, v1] | ||
|
||
|
||
# pylint: enable=no-member,invalid-name,unused-variable,no-self-argument,line-too-long,chained-comparison,not-callable,too-many-nested-blocks | ||
# fmt: on | ||
|
||
|
||
def test_rewrite_cooperative_fetch(): | ||
mod = create_prim_func(te_workload.matmul(n=512, m=512, k=512)) | ||
target = _target() | ||
ctx = _create_context(mod, target) | ||
|
||
sch = tir.Schedule(mod, debug_mask="all") | ||
# fmt: off | ||
# pylint: disable=line-too-long,invalid-name | ||
b0 = sch.get_block(name="C", func_name="main") | ||
b1 = sch.cache_write(block=b0, write_buffer_index=0, storage_scope="local") | ||
l2, l3, l4 = sch.get_loops(block=b0) | ||
v5, v6, v7, v8, v9 = sch.sample_perfect_tile(loop=l2, n=5, max_innermost_factor=64, decision=[1, 16, 1, 2, 16]) | ||
l10, l11, l12, l13, l14 = sch.split(loop=l2, factors=[v5, v6, v7, v8, v9]) | ||
v15, v16, v17, v18, v19 = sch.sample_perfect_tile(loop=l3, n=5, max_innermost_factor=64, decision=[16, 1, 8, 2, 2]) | ||
l20, l21, l22, l23, l24 = sch.split(loop=l3, factors=[v15, v16, v17, v18, v19]) | ||
v25, v26, v27 = sch.sample_perfect_tile(loop=l4, n=3, max_innermost_factor=64, decision=[1, 16, 32]) | ||
l28, l29, l30 = sch.split(loop=l4, factors=[v25, v26, v27]) | ||
sch.reorder(l10, l20, l11, l21, l12, l22, l28, l29, l13, l23, l30, l14, l24) | ||
l31 = sch.fuse(l10, l20) | ||
sch.bind(loop=l31, thread_axis="blockIdx.x") | ||
l32 = sch.fuse(l11, l21) | ||
sch.bind(loop=l32, thread_axis="vthread.x") | ||
l33 = sch.fuse(l12, l22) | ||
sch.bind(loop=l33, thread_axis="threadIdx.x") | ||
b34 = sch.cache_read(block=b0, read_buffer_index=1, storage_scope="shared") | ||
sch.compute_at(block=b34, loop=l28, preserve_unit_loops=True) | ||
_, _, _, _, l39, l40 = sch.get_loops(block=b34) | ||
l41 = sch.fuse(l39, l40) | ||
_, v43 = sch.sample_perfect_tile(loop=l41, n=2, max_innermost_factor=4, decision=[262144, 1]) | ||
sch.annotate(block_or_loop=b34, ann_key="meta_schedule.cooperative_fetch", ann_val=v43) | ||
b44 = sch.cache_read(block=b0, read_buffer_index=2, storage_scope="shared") | ||
sch.compute_at(block=b44, loop=l28, preserve_unit_loops=True) | ||
_, _, _, _, l49, l50 = sch.get_loops(block=b44) | ||
l51 = sch.fuse(l49, l50) | ||
_, v53 = sch.sample_perfect_tile(loop=l51, n=2, max_innermost_factor=4, decision=[8192, 2]) | ||
sch.annotate(block_or_loop=b44, ann_key="meta_schedule.cooperative_fetch", ann_val=v53) | ||
sch.reverse_compute_at(block=b1, loop=l33, preserve_unit_loops=True) | ||
# pylint: enable=line-too-long,invalid-name | ||
# fmt: on | ||
sch.enter_postproc() | ||
assert ctx.postprocs[0].apply(sch) | ||
tvm.ir.assert_structural_equal(sch.mod, AfterRewrite0) | ||
|
||
|
||
if __name__ == "__main__": | ||
test_rewrite_cooperative_fetch() |