Skip to content

Commit

Permalink
[TVMC] Allow output module name to be passed as a command line argument
Browse files Browse the repository at this point in the history
 * Allows module-name as a command line argument to tvmc
 * Updates microNPU graph partitioner to pass module name to PartitionGraph()
 * Updates CMSIS-NN graph partitioner to pass module name to PartitionGraph()

Change-Id: I12a4a2eef2ddc7e3c4a6c0dd8fdcab009c975bac
  • Loading branch information
grant-arm committed Apr 12, 2022
1 parent 1ae2a27 commit 061f1ea
Show file tree
Hide file tree
Showing 5 changed files with 179 additions and 7 deletions.
21 changes: 19 additions & 2 deletions python/tvm/driver/tvmc/compiler.py
Original file line number Diff line number Diff line change
Expand Up @@ -137,6 +137,11 @@ def add_compile_parser(subparsers, _):
type=parse_pass_list_str,
default="",
)
parser.add_argument(
"--module-name",
default="default",
help="The output module name. Defaults to 'default'.",
)


def drive_compile(args):
Expand Down Expand Up @@ -179,6 +184,7 @@ def drive_compile(args):
disabled_pass=args.disabled_pass,
pass_context_configs=args.pass_config,
additional_target_options=reconstruct_target_args(args),
mod_name=args.module_name,
)

return 0
Expand All @@ -202,6 +208,7 @@ def compile_model(
pass_context_configs: Optional[List[str]] = None,
additional_target_options: Optional[Dict[str, Dict[str, Any]]] = None,
use_vm: bool = False,
mod_name: Optional[str] = "default",
):
"""Compile a model from a supported framework into a TVM module.
Expand Down Expand Up @@ -251,6 +258,8 @@ def compile_model(
Additional target options in a dictionary to combine with initial Target arguments
use_vm: bool
Whether to use the VM to compile the model as opposed to the graph executor
mod_name: str, optional
The module name
Returns
-------
Expand All @@ -275,7 +284,7 @@ def compile_model(
if codegen["config_key"] is not None:
config[codegen["config_key"]] = codegen_from_cli["opts"]
with tvm.transform.PassContext(config=config):
mod = partition_function(mod, params, **codegen_from_cli["opts"])
mod = partition_function(mod, params, mod_name=mod_name, **codegen_from_cli["opts"])

if tuning_records and os.path.exists(tuning_records):
logger.debug("tuning records file provided: %s", tuning_records)
Expand All @@ -300,6 +309,7 @@ def compile_model(
runtime=runtime,
params=params,
use_vm=use_vm,
mod_name=mod_name,
)
else:
with autotvm.apply_history_best(tuning_records):
Expand All @@ -314,6 +324,7 @@ def compile_model(
runtime=runtime,
params=params,
use_vm=use_vm,
mod_name=mod_name,
)
else:
with tvm.transform.PassContext(
Expand All @@ -327,6 +338,7 @@ def compile_model(
runtime=runtime,
params=params,
use_vm=use_vm,
mod_name=mod_name,
)

# Generate output dump files with sources
Expand Down Expand Up @@ -364,6 +376,7 @@ def build(
runtime: Runtime,
params: Dict[str, tvm.nd.NDArray],
use_vm: bool,
mod_name: str,
):
"""
Builds the model with the provided executor.
Expand All @@ -383,13 +396,17 @@ def build(
A parameter dictionary for the model.
use_vm: bool
Whether to use the VM to compile the model as opposed to the graph executor
mod_name: str
The module name
"""
if use_vm:
logger.debug("building with vm compile")
return relay.vm.compile(mod, target=tvm_target, params=params)
logger.debug("building with relay build")
return relay.build(mod, target=tvm_target, executor=executor, runtime=runtime, params=params)
return relay.build(
mod, target=tvm_target, executor=executor, runtime=runtime, params=params, mod_name=mod_name
)


def save_dumps(module_name: str, dumps: Dict[str, str], dump_root: str = "."):
Expand Down
2 changes: 1 addition & 1 deletion python/tvm/driver/tvmc/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -393,7 +393,7 @@ def import_package(self, package_path: str):

has_graph_executor = "graph" in metadata["executors"]
graph = temp.relpath("executor-config/graph/graph.json") if has_graph_executor else None
params = temp.relpath("parameters/default.params")
params = temp.relpath(f'parameters/{metadata["model_name"]}.params')

self.type = "mlf"
else:
Expand Down
6 changes: 4 additions & 2 deletions python/tvm/relay/op/contrib/cmsisnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ def enabled():
return "cmsis-nn" in Target.list_kinds()


def partition_for_cmsisnn(mod, params=None, **opts):
def partition_for_cmsisnn(mod, params=None, mod_name="default", **opts):
"""Partition the graph greedily offloading supported
operators on Cortex-M using CMSIS-NN
Expand All @@ -41,6 +41,8 @@ def partition_for_cmsisnn(mod, params=None, **opts):
The module to run passes on.
params : Optional[Dict[str, NDArray]]
Constant input parameters.
mod_name: str, optional
The module name
Returns
-------
Expand All @@ -55,7 +57,7 @@ def partition_for_cmsisnn(mod, params=None, **opts):
transform.InferType(),
transform.MergeComposite(pattern_table()),
transform.AnnotateTarget("cmsis-nn"),
transform.PartitionGraph(),
transform.PartitionGraph(mod_name=mod_name),
GenerateCMSISNNConstants(),
ScalarToTensorConstants(),
ExtractConstantsFromPartitionedFunction(),
Expand Down
9 changes: 7 additions & 2 deletions python/tvm/relay/op/contrib/ethosu.py
Original file line number Diff line number Diff line change
Expand Up @@ -1767,7 +1767,10 @@ def pattern_table() -> List[Tuple[str, tvm.relay.dataflow_pattern.DFPattern, Cal
# pylint: disable=unused-argument
@requires_vela
def partition_for_ethosu(
mod: tvm.ir.IRModule, params: Optional[Dict[str, tvm.runtime.NDArray]] = None, **opts
mod: tvm.ir.IRModule,
params: Optional[Dict[str, tvm.runtime.NDArray]] = None,
mod_name: str = "default",
**opts,
):
"""This helper function partition the relay graph as produced by the
relay frontend for a given model into external functions
Expand All @@ -1779,6 +1782,8 @@ def partition_for_ethosu(
The IRModule that gets generated from a relay frontend
params : Optional[Dict[str, tvm.runtime.NDArray]]
Constant input parameters.
mod_name: str, optional
The module name
Returns
-------
Expand All @@ -1796,7 +1801,7 @@ def partition_for_ethosu(
mod = relay.transform.AnnotateTarget("ethos-u")(mod)
mod = relay.transform.MergeCompilerRegions()(mod)
mod = relay.transform.InferType()(mod)
mod = relay.transform.PartitionGraph()(mod)
mod = relay.transform.PartitionGraph(mod_name)(mod)
mod = relay.transform.InferType()(mod)
mod = preprocess.preprocess_ext_io()(mod)
return mod
148 changes: 148 additions & 0 deletions tests/python/driver/tvmc/test_compiler.py
Original file line number Diff line number Diff line change
Expand Up @@ -552,6 +552,154 @@ def test_compile_check_configs_composite_target(mock_pkg, mock_pc, mock_fe, mock
)


def test_compile_tflite_module_with_mod_name(tmpdir_factory, tflite_cnn_s_quantized):
pytest.importorskip("tflite")

output_dir = tmpdir_factory.mktemp("mlf")
tvmc_model = tvmc.load(tflite_cnn_s_quantized)

output_file_name = f"{output_dir}/file.tar"

tvmc.compiler.compile_model(
tvmc_model,
target=f"c -mcpu=cortex-m55",
runtime=Runtime("crt", {"system-lib": True}),
executor=Executor("aot"),
output_format="mlf",
package_path=output_file_name,
pass_context_configs=["tir.disable_vectorize=true"],
mod_name="classify",
)

# check that an MLF package was created
assert os.path.exists(output_file_name)

with tarfile.open(output_file_name) as mlf_package:
# check that the C source files have been named classify_lib*.c
c_source_files = [
name
for name in mlf_package.getnames()
if re.match(r"\./codegen/host/src/classify_lib\d+\.c", name)
]
assert len(c_source_files) > 0

# check that "default" doesn't occur in any of the C source files
# check that function names are of the form "tvmgen_classify_*"
for file_name in c_source_files:
with mlf_package.extractfile(file_name) as f:
content = f.read()
assert b"default" not in content
assert b"tvmgen_classify_" in content

# check that tvmgen_classify_run() function exists
with mlf_package.extractfile("./codegen/host/src/classify_lib0.c") as f:
content = f.read()
assert b"tvmgen_classify_run(" in content


@tvm.testing.requires_cmsisnn
def test_compile_tflite_module_with_mod_name_and_cmsisnn(tmpdir_factory, tflite_cnn_s_quantized):
pytest.importorskip("tflite")

output_dir = tmpdir_factory.mktemp("mlf")
tvmc_model = tvmc.load(tflite_cnn_s_quantized)

output_file_name = f"{output_dir}/file.tar"

tvmc.compiler.compile_model(
tvmc_model,
target=f"cmsis-nn, c -mcpu=cortex-m55",
runtime=Runtime("crt", {"system-lib": True}),
executor=Executor("aot"),
output_format="mlf",
package_path=output_file_name,
pass_context_configs=["tir.disable_vectorize=true"],
mod_name="classify",
)

# check that an MLF package was created
assert os.path.exists(output_file_name)

with tarfile.open(output_file_name) as mlf_package:
# check that the C source files have been named classify_lib*.c
c_source_files = [
name
for name in mlf_package.getnames()
if re.match(r"\./codegen/host/src/classify_lib\d+\.c", name)
]
assert len(c_source_files) > 0

# check that "default" doesn't occur in any of the C source files
# check that function names are of the form "tvmgen_classify_*"
for file_name in c_source_files:
with mlf_package.extractfile(file_name) as f:
content = f.read()
assert b"default" not in content
assert b"tvmgen_classify_" in content

# check that tvmgen_classify_run() function exists
with mlf_package.extractfile("./codegen/host/src/classify_lib0.c") as f:
content = f.read()
assert b"tvmgen_classify_run(" in content

# check that CMSIS-NN function names are of the form "tvmgen_classify_cmsis_nn_main_*"
with mlf_package.extractfile("./codegen/host/src/classify_lib2.c") as f:
content = f.read()
assert b"tvmgen_classify_cmsis_nn_main_" in content


def test_compile_tflite_module_with_mod_name_and_ethosu(
tmpdir_factory, tflite_mobilenet_v1_1_quant
):
pytest.importorskip("tflite")
pytest.importorskip("ethosu.vela")

output_dir = tmpdir_factory.mktemp("mlf")
tvmc_model = tvmc.load(tflite_mobilenet_v1_1_quant)
output_file_name = f"{output_dir}/file.tar"

tvmc.compiler.compile_model(
tvmc_model,
target=f"ethos-u -accelerator_config=ethos-u55-256, c -mcpu=cortex-m55",
runtime=Runtime("crt"),
executor=Executor("aot", {"unpacked-api": True}),
output_format="mlf",
package_path=output_file_name,
pass_context_configs=["tir.disable_vectorize=true"],
mod_name="classify",
)

# check that an MLF package was created
assert os.path.exists(output_file_name)

with tarfile.open(output_file_name) as mlf_package:
# check that the C source files have been named classify_lib*.c
c_source_files = [
name
for name in mlf_package.getnames()
if re.match(r"\./codegen/host/src/classify_lib\d+\.c", name)
]
assert len(c_source_files) > 0

# check that "default" doesn't occur in any of the C source files
# check that function names are of the form "tvmgen_classify_*"
for file_name in c_source_files:
with mlf_package.extractfile(file_name) as f:
content = f.read()
assert b"default" not in content
assert b"tvmgen_classify_" in content

# check that tvmgen_classify_run() function exists
with mlf_package.extractfile("./codegen/host/src/classify_lib0.c") as f:
content = f.read()
assert b"tvmgen_classify_run(" in content

# check that microNPU function names are of the form "tvmgen_classify_ethos_u_main_*"
with mlf_package.extractfile("./codegen/host/src/classify_lib2.c") as f:
content = f.read()
assert b"tvmgen_classify_ethos_u_main_" in content


if __name__ == "__main__":
import sys

Expand Down

0 comments on commit 061f1ea

Please sign in to comment.