Skip to content

Commit

Permalink
[USMP] Adding U4 usecase (#65)
Browse files Browse the repository at this point in the history
This commit adds a new usecase (U4) for
the USMP that enables the user to place I/O
tensors within the workspace and not
providing them seperately.

This allows the space for I/O tensors to
be utilized by the inference.
  • Loading branch information
manupak authored Apr 27, 2022
1 parent 23250f5 commit b9e246f
Showing 1 changed file with 151 additions and 1 deletion.
152 changes: 151 additions & 1 deletion rfcs/0009_Unified_Static_Memory_Planning.md
Original file line number Diff line number Diff line change
Expand Up @@ -349,6 +349,108 @@ tvmc compile my_model.tflite --executor=aot --output-format=mlf --target=c
TVMExecute(&my_model, &inputs, &outputs, &context);
}
```

## U4 : User wants to write/read directly to the workspace buffer

This usecase allows the space used by I/O tensors to be re-used by the inference.

### TVMC
```
tvmc compile my_model.tflite
--executor=aot
--target=c
--workspace-pools=sram
--pass-config tir.usmp.enable=1
--pass-config tir.usmp.use_workspace_io=1
```
### Codegen'd Artifacts
```
//Codegen'd artifacts in metadata.c (lib0.c)
int32_t tvmgen_my_model_run(
tvmgen_my_model_workspace_pools* workspace_pools,
){
return my_model_main(workspace_pools.sram);
}
// Returns a handle pointing to space inside the
// workspace pool where input should be stored
tvmgen_my_model_inputs tvmgen_my_model_map_inputs(
tvmgen_my_model_workspace_pools* workspace_pools
) {
tvmgen_my_model_inputs = {
.input0 = &workspace_pools->sram[<INPUT0_OFFSET>],
};
return tvmgen_my_model_inputs;
}
// Returns a handle pointing to space inside the
// workspace pool where output is stored
tvmgen_my_model_outputs tvmgen_my_model_map_outputs(
tvmgen_my_model_workspace_pools* workspace_pools
) {
tvmgen_my_model_outputs = {
.output0 = &workspace_pools->sram[<OUTPUT0_OFFSET>],
};
return tvmgen_my_model_outputs;
}
```
```
// metadata.h
#define TVM_MY_MODEL_SRAM_WORKSPACE_BUFFER_SIZE xxxx
typedef struct {
uint8_t* sram;
} tvmgen_my_model_workspace_pools;
typedef struct {
uint8_t* input0;
} tvmgen_my_model_inputs;
typedef struct {
uint8_t* output0;
} tvmgen_my_model_outputs;
tvmgen_my_model_inputs tvmgen_my_model_map_inputs(
tvmgen_my_model_workspace_pools* workspace_pools
);
tvmgen_my_model_outputs tvmgen_my_model_map_outputs(
tvmgen_my_model_workspace_pools* workspace_pools
);
```
### User Application
```
// The User Application model;
__attribute__((section( "SRAM" ), aligned( 16 ))) static uint8_t workspace_buffer_sram[TVM_MY_MODEL_SRAM_WORKSPACE_BUFFER_SIZE];
int main(...) {
...
tvmgen_my_model_workspace_pools workspaces = {
.sram = &workspace_buffer_sram,
};
tvmgen_my_model_inputs inputs =
tvmgen_my_model_map_inputs(&workspaces);
tvmgen_my_model_outputs outputs =
tvmgen_my_model_map_outputs(&workspaces);
// Generate input tensor by passing the handle
// E.g. this could be a driver writing directly to
// the workspace buffer
GenerateInput(inputs.input0)
tvmgen_my_model_run(&workspaces);
// A consumer can obtain the data through
// accessing the updated struct outputs
// that points inside the workspace.
ReadInferenceOutput(outputs.output0);
}
```
# Reference-level explanation

## Overview
Expand Down Expand Up @@ -500,6 +602,52 @@ This actual pass would traverse full TIR program and construct BufferInfo object
<compute>
...
```
## The optional lowering changes to support U4
After Step 1, the I/O tensors will be bound as allocate nodes with special annotation to keep track of the offsets within workspace pools. As an e.g. :
### Pre U4 IR transformation
```
__tvm_main__ = primfn(input1: handle, input2: handle, output1: handle, output2: handle) -> ()
attr = {"global_symbol": "__tvm_main__", "runner_function": True}
buffers = {output1_buffer_var: Buffer(output1_buffer_var_1: Pointer(global int16), int16, [452], []),
output2_buffer_var: Buffer(output2_buffer_var_1: Pointer(global int16), int16, [452], []),
input2_buffer_var: Buffer(input2_buffer_var_1: Pointer(global uint8), uint8, [150528], []),
input1_buffer_var: Buffer(input1_buffer_var_1: Pointer(global uint8), uint8, [150528], [])}
buffer_map = {input2: input2_buffer_var, input1: input1_buffer_var, output2: output2_buffer_var, output1: output1_buffer_var} {
@tir.call_extern("tvmgen_default_fused_cast_subtract", input1_buffer_var_1, @tir.lookup_param("p0", dtype=handle), output1_buffer_var_1, dtype=int32)
@tir.call_extern("tvmgen_default_fused_cast_subtract", input2_buffer_var_1, @tir.lookup_param("p1", dtype=handle), output2_buffer_var_1, dtype=int32)
}
```
### Post U4 IR transformation
```
@__tvm_main__ = primfn() -> ()
attr = {"global_symbol": "__tvm_main__", "runner_function": True}
buffers = {output2_buffer_var: Buffer(output2_buffer_var_1: Pointer(global int16), int16, [452], []),
output1_buffer_var: Buffer(output1_buffer_var_1: Pointer(global int16), int16, [452], []),
input2_buffer_var: Buffer(input2_buffer_var_1: Pointer(global uint8), uint8, [150528], []),
input1_buffer_var: Buffer(input1_buffer_var_1: Pointer(global uint8), uint8, [150528], [])}
buffer_map = {output1: handle: output1_buffer_var, input1: handle: input1_buffer_var, input2: handle: input2_buffer_var, output2: handle: output2_buffer_var} {
allocate(output2_buffer_var_1, int16, [452]), storage_scope = global, annotations = {"output_tensor": "output2"});
allocate(output1_buffer_var_1, int16, [452]), storage_scope = global, annotations = {"output_tensor": "output1"});
allocate(input2_buffer_var_1, uint8, [150528]), storage_scope = global, annotations = {"input_tensor": "input2"});
allocate(input1_buffer_var_1, uint8, [150528]), storage_scope = global, annotations = {"input_tensor": "input1"}) {
@tir.call_extern("tvmgen_default_fused_cast_subtract", input1_buffer_var_1, @tir.lookup_param("p0", dtype=handle), output1_buffer_var_1, dtype=int32)
@tir.call_extern("tvmgen_default_fused_cast_subtract", input2_buffer_var_1, @tir.lookup_param("p1", dtype=handle), output2_buffer_var_1, dtype=int32)
}
}

```
Through out the USMP lowering, the allocate node with such special annotations will be maintained as a `Map<String, PoolAllocation>`, where the key indicates the name of the I/O tensor while `PoolAllocation` captures the pool and the offset it was assigned in the USMP.
The above metadata will be used to produce the `tvmgen_<model_name>_map_inputs` and `tvmgen\_<model_name>_map_outputs` functions to metadata sources (See the guide-level explanation of U4)
# Code Structure
* src/tir/usmp/analysis/ -- this is where analysis passes of USMP will live
Expand All @@ -515,4 +663,6 @@ NOTE : to support tir.constants generally, we'll be enhancing the bound relay.co
# Drawbacks
* The relay "main" function that describes the call order to operator PrimFuncs has to be described in TIR to be able to integrate the USMP into the respective executor codegen. However, we dont view this as a major problem as the relay "main" function could easily be lowered to TIR.
* The relay "main" function that describes the call order to operator PrimFuncs has to be described in TIR to be able to integrate the USMP into the respective executor codegen. However, we dont view this as a major problem as the relay "main" function could easily be lowered to TIR.
* The U4 usecase will only be supported with [Embedded C Runtime Interface](https://discuss.tvm.apache.org/t/rfc-utvm-embedded-c-runtime-interface/9951/14). This is mainly because the nature of the requirement is associated with embedded usecases. However, the USMP changes here should be complimentary to support other runtime interfaces such as Module-based Model Runtime Interface's set_input and set_output in future.

0 comments on commit b9e246f

Please sign in to comment.