-
Notifications
You must be signed in to change notification settings - Fork 28.4k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[SPARK-41468][SQL] Fix PlanExpression handling in EquivalentExpressions #39010
[SPARK-41468][SQL] Fix PlanExpression handling in EquivalentExpressions #39010
Conversation
cc @cloud-fan |
thanks, merging to master/3.3! |
### What changes were proposed in this pull request? #36012 already added a check to avoid adding expressions containing `PlanExpression`s to `EquivalentExpressions` as those expressions might cause NPE on executors. But, for some reason, the check is still missing from `getExprState()` where we check the presence of an experssion in the equivalence map. This PR: - adds the check to `getExprState()` - moves the check from `updateExprTree()` to `addExprTree()` so as to run it only once. ### Why are the changes needed? To avoid exceptions like: ``` org.apache.spark.SparkException: Task failed while writing rows. at org.apache.spark.sql.errors.QueryExecutionErrors$.taskFailedWhileWritingRowsError(QueryExecutionErrors.scala:642) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.executeTask(FileFormatWriter.scala:348) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.$anonfun$write$21(FileFormatWriter.scala:256) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90) at org.apache.spark.scheduler.Task.run(Task.scala:136) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:548) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1504) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:551) at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128) at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628) at java.base/java.lang.Thread.run(Thread.java:834) Caused by: java.lang.NullPointerException at org.apache.spark.sql.execution.columnar.InMemoryTableScanExec.$anonfun$doCanonicalize$1(InMemoryTableScanExec.scala:51) at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:286) at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62) at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49) at scala.collection.TraversableLike.map(TraversableLike.scala:286) at scala.collection.TraversableLike.map$(TraversableLike.scala:279) at scala.collection.AbstractTraversable.map(Traversable.scala:108) at org.apache.spark.sql.execution.columnar.InMemoryTableScanExec.doCanonicalize(InMemoryTableScanExec.scala:51) at org.apache.spark.sql.execution.columnar.InMemoryTableScanExec.doCanonicalize(InMemoryTableScanExec.scala:30) ... at org.apache.spark.sql.catalyst.plans.QueryPlan.canonicalized(QueryPlan.scala:541) at org.apache.spark.sql.execution.SubqueryExec.doCanonicalize(basicPhysicalOperators.scala:850) at org.apache.spark.sql.execution.SubqueryExec.doCanonicalize(basicPhysicalOperators.scala:814) at org.apache.spark.sql.catalyst.plans.QueryPlan.canonicalized$lzycompute(QueryPlan.scala:542) at org.apache.spark.sql.catalyst.plans.QueryPlan.canonicalized(QueryPlan.scala:541) at org.apache.spark.sql.execution.ScalarSubquery.preCanonicalized$lzycompute(subquery.scala:72) at org.apache.spark.sql.execution.ScalarSubquery.preCanonicalized(subquery.scala:71) ... at org.apache.spark.sql.catalyst.expressions.Expression.canonicalized(Expression.scala:261) at org.apache.spark.sql.catalyst.expressions.Expression.semanticHash(Expression.scala:278) at org.apache.spark.sql.catalyst.expressions.ExpressionEquals.hashCode(EquivalentExpressions.scala:226) at scala.runtime.Statics.anyHash(Statics.java:122) at scala.collection.mutable.HashTable$HashUtils.elemHashCode(HashTable.scala:416) at scala.collection.mutable.HashTable$HashUtils.elemHashCode$(HashTable.scala:416) at scala.collection.mutable.HashMap.elemHashCode(HashMap.scala:44) at scala.collection.mutable.HashTable.findEntry(HashTable.scala:136) at scala.collection.mutable.HashTable.findEntry$(HashTable.scala:135) at scala.collection.mutable.HashMap.findEntry(HashMap.scala:44) at scala.collection.mutable.HashMap.get(HashMap.scala:74) at org.apache.spark.sql.catalyst.expressions.EquivalentExpressions.getExprState(EquivalentExpressions.scala:180) at org.apache.spark.sql.catalyst.expressions.SubExprEvaluationRuntime.replaceWithProxy(SubExprEvaluationRuntime.scala:78) at org.apache.spark.sql.catalyst.expressions.SubExprEvaluationRuntime.$anonfun$proxyExpressions$3(SubExprEvaluationRuntime.scala:109) at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:286) at scala.collection.IndexedSeqOptimized.foreach(IndexedSeqOptimized.scala:36) at scala.collection.IndexedSeqOptimized.foreach$(IndexedSeqOptimized.scala:33) at scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:38) at scala.collection.TraversableLike.map(TraversableLike.scala:286) at scala.collection.TraversableLike.map$(TraversableLike.scala:279) at scala.collection.AbstractTraversable.map(Traversable.scala:108) at org.apache.spark.sql.catalyst.expressions.SubExprEvaluationRuntime.proxyExpressions(SubExprEvaluationRuntime.scala:109) at org.apache.spark.sql.catalyst.expressions.InterpretedUnsafeProjection.<init>(InterpretedUnsafeProjection.scala:40) at org.apache.spark.sql.catalyst.expressions.InterpretedUnsafeProjection$.createProjection(InterpretedUnsafeProjection.scala:112) at org.apache.spark.sql.catalyst.expressions.UnsafeProjection$.createInterpretedObject(Projection.scala:127) at org.apache.spark.sql.catalyst.expressions.UnsafeProjection$.createInterpretedObject(Projection.scala:119) at org.apache.spark.sql.catalyst.expressions.CodeGeneratorWithInterpretedFallback.createObject(CodeGeneratorWithInterpretedFallback.scala:56) at org.apache.spark.sql.catalyst.expressions.UnsafeProjection$.create(Projection.scala:150) at org.apache.spark.sql.catalyst.expressions.UnsafeProjection$.create(Projection.scala:160) at org.apache.spark.sql.execution.ProjectExec.$anonfun$doExecute$1(basicPhysicalOperators.scala:95) at org.apache.spark.sql.execution.ProjectExec.$anonfun$doExecute$1$adapted(basicPhysicalOperators.scala:94) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsWithIndexInternal$2(RDD.scala:877) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsWithIndexInternal$2$adapted(RDD.scala:877) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:365) at org.apache.spark.rdd.RDD.iterator(RDD.scala:329) at org.apache.spark.rdd.UnionRDD.compute(UnionRDD.scala:106) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:365) at org.apache.spark.rdd.RDD.iterator(RDD.scala:329) at org.apache.spark.rdd.CoalescedRDD.$anonfun$compute$1(CoalescedRDD.scala:99) at scala.collection.Iterator$$anon$11.nextCur(Iterator.scala:486) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:492) at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460) at org.apache.spark.sql.execution.datasources.FileFormatDataWriter.writeWithIterator(FileFormatDataWriter.scala:91) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.$anonfun$executeTask$1(FileFormatWriter.scala:331) at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1538) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.executeTask(FileFormatWriter.scala:338) ``` ### Does this PR introduce _any_ user-facing change? No. ### How was this patch tested? Existing UTs. Closes #39010 from peter-toth/SPARK-41468-fix-planexpressions-in-equivalentexpressions. Authored-by: Peter Toth <peter.toth@gmail.com> Signed-off-by: Wenchen Fan <wenchen@databricks.com> (cherry picked from commit 1b2d700) Signed-off-by: Wenchen Fan <wenchen@databricks.com>
Thanks for the quick review! |
!e.exists { | ||
// `LambdaVariable` is usually used as a loop variable, which can't be evaluated ahead of the | ||
// loop. So we can't evaluate sub-expressions containing `LambdaVariable` at the beginning. | ||
case _: LambdaVariable => true |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I just noticed that there is a NamedLambdaVariable
, shall we match it as well?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Sure. Here is the follow-up PR: #39046
…tExpressions ### What changes were proposed in this pull request? This is a follow-up PR to #39010 to handle `NamedLambdaVariable`s too. ### Why are the changes needed? To avoid possible issues with higer-order functions. ### Does this PR introduce _any_ user-facing change? No. ### How was this patch tested? Existing UTs. Closes #39046 from peter-toth/SPARK-41468-fix-planexpressions-in-equivalentexpressions-follow-up. Authored-by: Peter Toth <peter.toth@gmail.com> Signed-off-by: Wenchen Fan <wenchen@databricks.com>
### What changes were proposed in this pull request? apache#36012 already added a check to avoid adding expressions containing `PlanExpression`s to `EquivalentExpressions` as those expressions might cause NPE on executors. But, for some reason, the check is still missing from `getExprState()` where we check the presence of an experssion in the equivalence map. This PR: - adds the check to `getExprState()` - moves the check from `updateExprTree()` to `addExprTree()` so as to run it only once. ### Why are the changes needed? To avoid exceptions like: ``` org.apache.spark.SparkException: Task failed while writing rows. at org.apache.spark.sql.errors.QueryExecutionErrors$.taskFailedWhileWritingRowsError(QueryExecutionErrors.scala:642) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.executeTask(FileFormatWriter.scala:348) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.$anonfun$write$21(FileFormatWriter.scala:256) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90) at org.apache.spark.scheduler.Task.run(Task.scala:136) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:548) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1504) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:551) at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128) at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628) at java.base/java.lang.Thread.run(Thread.java:834) Caused by: java.lang.NullPointerException at org.apache.spark.sql.execution.columnar.InMemoryTableScanExec.$anonfun$doCanonicalize$1(InMemoryTableScanExec.scala:51) at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:286) at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62) at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49) at scala.collection.TraversableLike.map(TraversableLike.scala:286) at scala.collection.TraversableLike.map$(TraversableLike.scala:279) at scala.collection.AbstractTraversable.map(Traversable.scala:108) at org.apache.spark.sql.execution.columnar.InMemoryTableScanExec.doCanonicalize(InMemoryTableScanExec.scala:51) at org.apache.spark.sql.execution.columnar.InMemoryTableScanExec.doCanonicalize(InMemoryTableScanExec.scala:30) ... at org.apache.spark.sql.catalyst.plans.QueryPlan.canonicalized(QueryPlan.scala:541) at org.apache.spark.sql.execution.SubqueryExec.doCanonicalize(basicPhysicalOperators.scala:850) at org.apache.spark.sql.execution.SubqueryExec.doCanonicalize(basicPhysicalOperators.scala:814) at org.apache.spark.sql.catalyst.plans.QueryPlan.canonicalized$lzycompute(QueryPlan.scala:542) at org.apache.spark.sql.catalyst.plans.QueryPlan.canonicalized(QueryPlan.scala:541) at org.apache.spark.sql.execution.ScalarSubquery.preCanonicalized$lzycompute(subquery.scala:72) at org.apache.spark.sql.execution.ScalarSubquery.preCanonicalized(subquery.scala:71) ... at org.apache.spark.sql.catalyst.expressions.Expression.canonicalized(Expression.scala:261) at org.apache.spark.sql.catalyst.expressions.Expression.semanticHash(Expression.scala:278) at org.apache.spark.sql.catalyst.expressions.ExpressionEquals.hashCode(EquivalentExpressions.scala:226) at scala.runtime.Statics.anyHash(Statics.java:122) at scala.collection.mutable.HashTable$HashUtils.elemHashCode(HashTable.scala:416) at scala.collection.mutable.HashTable$HashUtils.elemHashCode$(HashTable.scala:416) at scala.collection.mutable.HashMap.elemHashCode(HashMap.scala:44) at scala.collection.mutable.HashTable.findEntry(HashTable.scala:136) at scala.collection.mutable.HashTable.findEntry$(HashTable.scala:135) at scala.collection.mutable.HashMap.findEntry(HashMap.scala:44) at scala.collection.mutable.HashMap.get(HashMap.scala:74) at org.apache.spark.sql.catalyst.expressions.EquivalentExpressions.getExprState(EquivalentExpressions.scala:180) at org.apache.spark.sql.catalyst.expressions.SubExprEvaluationRuntime.replaceWithProxy(SubExprEvaluationRuntime.scala:78) at org.apache.spark.sql.catalyst.expressions.SubExprEvaluationRuntime.$anonfun$proxyExpressions$3(SubExprEvaluationRuntime.scala:109) at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:286) at scala.collection.IndexedSeqOptimized.foreach(IndexedSeqOptimized.scala:36) at scala.collection.IndexedSeqOptimized.foreach$(IndexedSeqOptimized.scala:33) at scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:38) at scala.collection.TraversableLike.map(TraversableLike.scala:286) at scala.collection.TraversableLike.map$(TraversableLike.scala:279) at scala.collection.AbstractTraversable.map(Traversable.scala:108) at org.apache.spark.sql.catalyst.expressions.SubExprEvaluationRuntime.proxyExpressions(SubExprEvaluationRuntime.scala:109) at org.apache.spark.sql.catalyst.expressions.InterpretedUnsafeProjection.<init>(InterpretedUnsafeProjection.scala:40) at org.apache.spark.sql.catalyst.expressions.InterpretedUnsafeProjection$.createProjection(InterpretedUnsafeProjection.scala:112) at org.apache.spark.sql.catalyst.expressions.UnsafeProjection$.createInterpretedObject(Projection.scala:127) at org.apache.spark.sql.catalyst.expressions.UnsafeProjection$.createInterpretedObject(Projection.scala:119) at org.apache.spark.sql.catalyst.expressions.CodeGeneratorWithInterpretedFallback.createObject(CodeGeneratorWithInterpretedFallback.scala:56) at org.apache.spark.sql.catalyst.expressions.UnsafeProjection$.create(Projection.scala:150) at org.apache.spark.sql.catalyst.expressions.UnsafeProjection$.create(Projection.scala:160) at org.apache.spark.sql.execution.ProjectExec.$anonfun$doExecute$1(basicPhysicalOperators.scala:95) at org.apache.spark.sql.execution.ProjectExec.$anonfun$doExecute$1$adapted(basicPhysicalOperators.scala:94) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsWithIndexInternal$2(RDD.scala:877) at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsWithIndexInternal$2$adapted(RDD.scala:877) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:365) at org.apache.spark.rdd.RDD.iterator(RDD.scala:329) at org.apache.spark.rdd.UnionRDD.compute(UnionRDD.scala:106) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:365) at org.apache.spark.rdd.RDD.iterator(RDD.scala:329) at org.apache.spark.rdd.CoalescedRDD.$anonfun$compute$1(CoalescedRDD.scala:99) at scala.collection.Iterator$$anon$11.nextCur(Iterator.scala:486) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:492) at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460) at org.apache.spark.sql.execution.datasources.FileFormatDataWriter.writeWithIterator(FileFormatDataWriter.scala:91) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.$anonfun$executeTask$1(FileFormatWriter.scala:331) at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1538) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.executeTask(FileFormatWriter.scala:338) ``` ### Does this PR introduce _any_ user-facing change? No. ### How was this patch tested? Existing UTs. Closes apache#39010 from peter-toth/SPARK-41468-fix-planexpressions-in-equivalentexpressions. Authored-by: Peter Toth <peter.toth@gmail.com> Signed-off-by: Wenchen Fan <wenchen@databricks.com>
…tExpressions ### What changes were proposed in this pull request? This is a follow-up PR to apache#39010 to handle `NamedLambdaVariable`s too. ### Why are the changes needed? To avoid possible issues with higer-order functions. ### Does this PR introduce _any_ user-facing change? No. ### How was this patch tested? Existing UTs. Closes apache#39046 from peter-toth/SPARK-41468-fix-planexpressions-in-equivalentexpressions-follow-up. Authored-by: Peter Toth <peter.toth@gmail.com> Signed-off-by: Wenchen Fan <wenchen@databricks.com>
…edExpression() ### What changes were proposed in this pull request? In `EquivalentExpressions.addExpr()`, add a guard `supportedExpression()` to make it consistent with `addExprTree()` and `getExprState()`. ### Why are the changes needed? This fixes a regression caused by #39010 which added the `supportedExpression()` to `addExprTree()` and `getExprState()` but not `addExpr()`. One example of a use case affected by the inconsistency is the `PhysicalAggregation` pattern in physical planning. There, it calls `addExpr()` to deduplicate the aggregate expressions, and then calls `getExprState()` to deduplicate the result expressions. Guarding inconsistently will cause the aggregate and result expressions go out of sync, eventually resulting in query execution error (or whole-stage codegen error). ### Does this PR introduce _any_ user-facing change? This fixes a regression affecting Spark 3.3.2+, where it may manifest as an error running aggregate operators with higher-order functions. Example running the SQL command: ```sql select max(transform(array(id), x -> x)), max(transform(array(id), x -> x)) from range(2) ``` example error message before the fix: ``` java.lang.IllegalStateException: Couldn't find max(transform(array(id#0L), lambdafunction(lambda x#2L, lambda x#2L, false)))#4 in [max(transform(array(id#0L), lambdafunction(lambda x#1L, lambda x#1L, false)))#3] ``` after the fix this error is gone. ### How was this patch tested? Added new test cases to `SubexpressionEliminationSuite` for the immediate issue, and to `DataFrameAggregateSuite` for an example of user-visible symptom. Closes #40473 from rednaxelafx/spark-42851. Authored-by: Kris Mok <kris.mok@databricks.com> Signed-off-by: Wenchen Fan <wenchen@databricks.com>
…edExpression() ### What changes were proposed in this pull request? In `EquivalentExpressions.addExpr()`, add a guard `supportedExpression()` to make it consistent with `addExprTree()` and `getExprState()`. ### Why are the changes needed? This fixes a regression caused by #39010 which added the `supportedExpression()` to `addExprTree()` and `getExprState()` but not `addExpr()`. One example of a use case affected by the inconsistency is the `PhysicalAggregation` pattern in physical planning. There, it calls `addExpr()` to deduplicate the aggregate expressions, and then calls `getExprState()` to deduplicate the result expressions. Guarding inconsistently will cause the aggregate and result expressions go out of sync, eventually resulting in query execution error (or whole-stage codegen error). ### Does this PR introduce _any_ user-facing change? This fixes a regression affecting Spark 3.3.2+, where it may manifest as an error running aggregate operators with higher-order functions. Example running the SQL command: ```sql select max(transform(array(id), x -> x)), max(transform(array(id), x -> x)) from range(2) ``` example error message before the fix: ``` java.lang.IllegalStateException: Couldn't find max(transform(array(id#0L), lambdafunction(lambda x#2L, lambda x#2L, false)))#4 in [max(transform(array(id#0L), lambdafunction(lambda x#1L, lambda x#1L, false)))#3] ``` after the fix this error is gone. ### How was this patch tested? Added new test cases to `SubexpressionEliminationSuite` for the immediate issue, and to `DataFrameAggregateSuite` for an example of user-visible symptom. Closes #40473 from rednaxelafx/spark-42851. Authored-by: Kris Mok <kris.mok@databricks.com> Signed-off-by: Wenchen Fan <wenchen@databricks.com> (cherry picked from commit ef0a76e) Signed-off-by: Wenchen Fan <wenchen@databricks.com>
…edExpression() ### What changes were proposed in this pull request? In `EquivalentExpressions.addExpr()`, add a guard `supportedExpression()` to make it consistent with `addExprTree()` and `getExprState()`. ### Why are the changes needed? This fixes a regression caused by apache#39010 which added the `supportedExpression()` to `addExprTree()` and `getExprState()` but not `addExpr()`. One example of a use case affected by the inconsistency is the `PhysicalAggregation` pattern in physical planning. There, it calls `addExpr()` to deduplicate the aggregate expressions, and then calls `getExprState()` to deduplicate the result expressions. Guarding inconsistently will cause the aggregate and result expressions go out of sync, eventually resulting in query execution error (or whole-stage codegen error). ### Does this PR introduce _any_ user-facing change? This fixes a regression affecting Spark 3.3.2+, where it may manifest as an error running aggregate operators with higher-order functions. Example running the SQL command: ```sql select max(transform(array(id), x -> x)), max(transform(array(id), x -> x)) from range(2) ``` example error message before the fix: ``` java.lang.IllegalStateException: Couldn't find max(transform(array(id#0L), lambdafunction(lambda x#2L, lambda x#2L, false)))apache#4 in [max(transform(array(id#0L), lambdafunction(lambda x#1L, lambda x#1L, false)))apache#3] ``` after the fix this error is gone. ### How was this patch tested? Added new test cases to `SubexpressionEliminationSuite` for the immediate issue, and to `DataFrameAggregateSuite` for an example of user-visible symptom. Closes apache#40473 from rednaxelafx/spark-42851. Authored-by: Kris Mok <kris.mok@databricks.com> Signed-off-by: Wenchen Fan <wenchen@databricks.com> (cherry picked from commit ef0a76e) Signed-off-by: Wenchen Fan <wenchen@databricks.com>
…in EquivalentExpressions This is a follow-up PR to apache#39010 to handle `NamedLambdaVariable`s too. To avoid possible issues with higer-order functions. No. Existing UTs. Closes apache#39046 from peter-toth/SPARK-41468-fix-planexpressions-in-equivalentexpressions-follow-up. Change-Id: I6166bc79b2f60cf802d6c9e438b0a6e710201b24 Authored-by: Peter Toth <peter.toth@gmail.com> Signed-off-by: Wenchen Fan <wenchen@databricks.com>
What changes were proposed in this pull request?
#36012 already added a check to avoid adding expressions containing
PlanExpression
s toEquivalentExpressions
as those expressions might cause NPE on executors. But, for some reason, the check is still missing fromgetExprState()
where we check the presence of an experssion in the equivalence map.This PR:
getExprState()
updateExprTree()
toaddExprTree()
so as to run it only once.Why are the changes needed?
To avoid exceptions like:
Does this PR introduce any user-facing change?
No.
How was this patch tested?
Existing UTs.