Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[SPARK-4789] [SPARK-4942] [SPARK-5031] [mllib] Standardize ML Prediction APIs #3637

Closed
wants to merge 30 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
30 commits
Select commit Hold shift + click to select a range
bfade12
Added lots of classes for new ML API:
jkbradley Nov 24, 2014
d35bb5d
fixed compilation issues, but have not added tests yet
jkbradley Nov 24, 2014
52f4fde
removing everything except for simple class hierarchy for classification
jkbradley Dec 1, 2014
d705e87
Added LinearRegression and Regressor back from ml-api branch
jkbradley Dec 4, 2014
601e792
Modified ParamMap to sort parameters in toString. Cleaned up classes…
jkbradley Dec 5, 2014
0617d61
Fixed bug from last commit (sorting paramMap by parameter names in to…
jkbradley Dec 5, 2014
54b7b31
Fixed issue with logreg threshold being set correctly
jkbradley Dec 5, 2014
e433872
Updated docs. Added LabeledPointSuite to spark.ml
jkbradley Dec 5, 2014
57d54ab
* Changed semantics of Predictor.train() to merge the given paramMap …
jkbradley Dec 5, 2014
58802e3
added train() to Predictor subclasses which does not take a ParamMap.
jkbradley Dec 6, 2014
adbe50a
* fixed LinearRegression train() to use embedded paramMap
jkbradley Dec 6, 2014
1680905
Added JavaLabeledPointSuite.java for spark.ml, and added constructor …
jkbradley Dec 6, 2014
8d13233
Added methods:
jkbradley Dec 8, 2014
bc654e1
Added spark.ml LinearRegressionSuite
jkbradley Dec 8, 2014
4e2f711
rat fix
jkbradley Dec 8, 2014
1c61723
* Made ProbabilisticClassificationModel into a subclass of Classifica…
jkbradley Dec 30, 2014
934f97b
Fixed bugs from previous commit.
jkbradley Dec 30, 2014
c3c8da5
small cleanup
jkbradley Dec 30, 2014
0a16da9
Fixed Linear/Logistic RegressionSuites
jkbradley Dec 31, 2014
82f340b
Fixed bug in LogisticRegression (introduced in this PR). Fixed Java …
jkbradley Dec 31, 2014
343e7bd
added blanket mima exclude for ml package
jkbradley Dec 31, 2014
f549e34
Updates based on code review. Major ones are:
jkbradley Jan 15, 2015
216d199
fixed after sql datatypes PR got merged
jkbradley Jan 15, 2015
f542997
Added MIMA excludes for VectorUDT (now public), and added DeveloperAp…
jkbradley Jan 19, 2015
9872424
fixed JavaLinearRegressionSuite.java Java sql api
jkbradley Jan 19, 2015
bcb9549
Fixed issues after rebasing from master (after move from SchemaRDD to…
jkbradley Jan 30, 2015
fc62406
fixed test suites after last commit
jkbradley Jan 30, 2015
8316d5e
fixes after rebasing on master
jkbradley Feb 5, 2015
fec348a
Added JavaDeveloperApiExample.java and fixed other issues: Made devel…
jkbradley Feb 6, 2015
405bfb8
Last edits based on code review. Small cleanups
jkbradley Feb 6, 2015
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -116,10 +116,12 @@ public static void main(String[] args) {

// Make predictions on test documents. cvModel uses the best model found (lrModel).
cvModel.transform(test).registerTempTable("prediction");
DataFrame predictions = jsql.sql("SELECT id, text, score, prediction FROM prediction");
DataFrame predictions = jsql.sql("SELECT id, text, probability, prediction FROM prediction");
for (Row r: predictions.collect()) {
System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> score=" + r.get(2)
System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> prob=" + r.get(2)
+ ", prediction=" + r.get(3));
}

jsc.stop();
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,217 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.examples.ml;

import java.util.List;

import com.google.common.collect.Lists;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.ml.classification.Classifier;
import org.apache.spark.ml.classification.ClassificationModel;
import org.apache.spark.ml.param.IntParam;
import org.apache.spark.ml.param.ParamMap;
import org.apache.spark.ml.param.Params;
import org.apache.spark.ml.param.Params$;
import org.apache.spark.mllib.linalg.BLAS;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;


/**
* A simple example demonstrating how to write your own learning algorithm using Estimator,
* Transformer, and other abstractions.
* This mimics {@link org.apache.spark.ml.classification.LogisticRegression}.
*
* Run with
* <pre>
* bin/run-example ml.JavaDeveloperApiExample
* </pre>
*/
public class JavaDeveloperApiExample {

public static void main(String[] args) throws Exception {
SparkConf conf = new SparkConf().setAppName("JavaDeveloperApiExample");
JavaSparkContext jsc = new JavaSparkContext(conf);
SQLContext jsql = new SQLContext(jsc);

// Prepare training data.
List<LabeledPoint> localTraining = Lists.newArrayList(
new LabeledPoint(1.0, Vectors.dense(0.0, 1.1, 0.1)),
new LabeledPoint(0.0, Vectors.dense(2.0, 1.0, -1.0)),
new LabeledPoint(0.0, Vectors.dense(2.0, 1.3, 1.0)),
new LabeledPoint(1.0, Vectors.dense(0.0, 1.2, -0.5)));
DataFrame training = jsql.applySchema(jsc.parallelize(localTraining), LabeledPoint.class);

// Create a LogisticRegression instance. This instance is an Estimator.
MyJavaLogisticRegression lr = new MyJavaLogisticRegression();
// Print out the parameters, documentation, and any default values.
System.out.println("MyJavaLogisticRegression parameters:\n" + lr.explainParams() + "\n");

// We may set parameters using setter methods.
lr.setMaxIter(10);

// Learn a LogisticRegression model. This uses the parameters stored in lr.
MyJavaLogisticRegressionModel model = lr.fit(training);

// Prepare test data.
List<LabeledPoint> localTest = Lists.newArrayList(
new LabeledPoint(1.0, Vectors.dense(-1.0, 1.5, 1.3)),
new LabeledPoint(0.0, Vectors.dense(3.0, 2.0, -0.1)),
new LabeledPoint(1.0, Vectors.dense(0.0, 2.2, -1.5)));
DataFrame test = jsql.applySchema(jsc.parallelize(localTest), LabeledPoint.class);

// Make predictions on test documents. cvModel uses the best model found (lrModel).
DataFrame results = model.transform(test);
double sumPredictions = 0;
for (Row r : results.select("features", "label", "prediction").collect()) {
sumPredictions += r.getDouble(2);
}
if (sumPredictions != 0.0) {
throw new Exception("MyJavaLogisticRegression predicted something other than 0," +
" even though all weights are 0!");
}

jsc.stop();
}
}

/**
* Example of defining a type of {@link Classifier}.
*
* NOTE: This is private since it is an example. In practice, you may not want it to be private.
*/
class MyJavaLogisticRegression
extends Classifier<Vector, MyJavaLogisticRegression, MyJavaLogisticRegressionModel>
implements Params {

/**
* Param for max number of iterations
* <p/>
* NOTE: The usual way to add a parameter to a model or algorithm is to include:
* - val myParamName: ParamType
* - def getMyParamName
* - def setMyParamName
*/
IntParam maxIter = new IntParam(this, "maxIter", "max number of iterations");

int getMaxIter() { return (int)get(maxIter); }

public MyJavaLogisticRegression() {
setMaxIter(100);
}

// The parameter setter is in this class since it should return type MyJavaLogisticRegression.
MyJavaLogisticRegression setMaxIter(int value) {
return (MyJavaLogisticRegression)set(maxIter, value);
}

// This method is used by fit().
// In Java, we have to make it public since Java does not understand Scala's protected modifier.
public MyJavaLogisticRegressionModel train(DataFrame dataset, ParamMap paramMap) {
// Extract columns from data using helper method.
JavaRDD<LabeledPoint> oldDataset = extractLabeledPoints(dataset, paramMap).toJavaRDD();

// Do learning to estimate the weight vector.
int numFeatures = oldDataset.take(1).get(0).features().size();
Vector weights = Vectors.zeros(numFeatures); // Learning would happen here.

// Create a model, and return it.
return new MyJavaLogisticRegressionModel(this, paramMap, weights);
}
}

/**
* Example of defining a type of {@link ClassificationModel}.
*
* NOTE: This is private since it is an example. In practice, you may not want it to be private.
*/
class MyJavaLogisticRegressionModel
extends ClassificationModel<Vector, MyJavaLogisticRegressionModel> implements Params {

private MyJavaLogisticRegression parent_;
public MyJavaLogisticRegression parent() { return parent_; }

private ParamMap fittingParamMap_;
public ParamMap fittingParamMap() { return fittingParamMap_; }

private Vector weights_;
public Vector weights() { return weights_; }

public MyJavaLogisticRegressionModel(
MyJavaLogisticRegression parent_,
ParamMap fittingParamMap_,
Vector weights_) {
this.parent_ = parent_;
this.fittingParamMap_ = fittingParamMap_;
this.weights_ = weights_;
}

// This uses the default implementation of transform(), which reads column "features" and outputs
// columns "prediction" and "rawPrediction."

// This uses the default implementation of predict(), which chooses the label corresponding to
// the maximum value returned by [[predictRaw()]].

/**
* Raw prediction for each possible label.
* The meaning of a "raw" prediction may vary between algorithms, but it intuitively gives
* a measure of confidence in each possible label (where larger = more confident).
* This internal method is used to implement [[transform()]] and output [[rawPredictionCol]].
*
* @return vector where element i is the raw prediction for label i.
* This raw prediction may be any real number, where a larger value indicates greater
* confidence for that label.
*
* In Java, we have to make this method public since Java does not understand Scala's protected
* modifier.
*/
public Vector predictRaw(Vector features) {
double margin = BLAS.dot(features, weights_);
// There are 2 classes (binary classification), so we return a length-2 vector,
// where index i corresponds to class i (i = 0, 1).
return Vectors.dense(-margin, margin);
}

/**
* Number of classes the label can take. 2 indicates binary classification.
*/
public int numClasses() { return 2; }

/**
* Create a copy of the model.
* The copy is shallow, except for the embedded paramMap, which gets a deep copy.
* <p/>
* This is used for the defaul implementation of [[transform()]].
*
* In Java, we have to make this method public since Java does not understand Scala's protected
* modifier.
*/
public MyJavaLogisticRegressionModel copy() {
MyJavaLogisticRegressionModel m =
new MyJavaLogisticRegressionModel(parent_, fittingParamMap_, weights_);
Params$.MODULE$.inheritValues(this.paramMap(), this, m);
return m;
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ public static void main(String[] args) {

// One can also combine ParamMaps.
ParamMap paramMap2 = new ParamMap();
paramMap2.put(lr.scoreCol().w("probability")); // Change output column name
paramMap2.put(lr.probabilityCol().w("myProbability")); // Change output column name
ParamMap paramMapCombined = paramMap.$plus$plus(paramMap2);

// Now learn a new model using the paramMapCombined parameters.
Expand All @@ -98,14 +98,16 @@ public static void main(String[] args) {

// Make predictions on test documents using the Transformer.transform() method.
// LogisticRegression.transform will only use the 'features' column.
// Note that model2.transform() outputs a 'probability' column instead of the usual 'score'
// column since we renamed the lr.scoreCol parameter previously.
// Note that model2.transform() outputs a 'myProbability' column instead of the usual
// 'probability' column since we renamed the lr.probabilityCol parameter previously.
model2.transform(test).registerTempTable("results");
DataFrame results =
jsql.sql("SELECT features, label, probability, prediction FROM results");
jsql.sql("SELECT features, label, myProbability, prediction FROM results");
for (Row r: results.collect()) {
System.out.println("(" + r.get(0) + ", " + r.get(1) + ") -> prob=" + r.get(2)
+ ", prediction=" + r.get(3));
}

jsc.stop();
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -85,8 +85,10 @@ public static void main(String[] args) {
model.transform(test).registerTempTable("prediction");
DataFrame predictions = jsql.sql("SELECT id, text, score, prediction FROM prediction");
for (Row r: predictions.collect()) {
System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> score=" + r.get(2)
System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> prob=" + r.get(2)
+ ", prediction=" + r.get(3));
}

jsc.stop();
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
import org.apache.spark.ml.tuning.{ParamGridBuilder, CrossValidator}
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.sql.{Row, SQLContext}

/**
Expand Down Expand Up @@ -100,10 +101,10 @@ object CrossValidatorExample {

// Make predictions on test documents. cvModel uses the best model found (lrModel).
cvModel.transform(test)
.select("id", "text", "score", "prediction")
.select("id", "text", "probability", "prediction")
.collect()
.foreach { case Row(id: Long, text: String, score: Double, prediction: Double) =>
println("(" + id + ", " + text + ") --> score=" + score + ", prediction=" + prediction)
.foreach { case Row(id: Long, text: String, prob: Vector, prediction: Double) =>
println(s"($id, $text) --> prob=$prob, prediction=$prediction")
}

sc.stop()
Expand Down
Loading