Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[SPARK-33853][SQL] EXPLAIN CODEGEN and BenchmarkQueryTest don't show subquery code #30859

Closed
wants to merge 8 commits into from

Conversation

sarutak
Copy link
Member

@sarutak sarutak commented Dec 19, 2020

What changes were proposed in this pull request?

This PR fixes an issue that EXPLAIN CODEGEN and BenchmarkQueryTest don't show the corresponding code for subqueries.

The following example is about EXPLAIN CODEGEN.

spark.conf.set("spark.sql.adaptive.enabled", "false")
val df = spark.range(1, 100)
df.createTempView("df")
spark.sql("SELECT (SELECT min(id) AS v FROM df)").explain("CODEGEN")

scala> spark.sql("SELECT (SELECT min(id) AS v FROM df)").explain("CODEGEN")
Found 1 WholeStageCodegen subtrees.
== Subtree 1 / 1 (maxMethodCodeSize:55; maxConstantPoolSize:97(0.15% used); numInnerClasses:0) ==
*(1) Project [Subquery scalar-subquery#3, [id=#24] AS scalarsubquery()#5L]
:  +- Subquery scalar-subquery#3, [id=#24]
:     +- *(2) HashAggregate(keys=[], functions=[min(id#0L)], output=[v#2L])
:        +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [id=#20]
:           +- *(1) HashAggregate(keys=[], functions=[partial_min(id#0L)], output=[min#8L])
:              +- *(1) Range (1, 100, step=1, splits=12)
+- *(1) Scan OneRowRelation[]

Generated code:
/* 001 */ public Object generate(Object[] references) {
/* 002 */   return new GeneratedIteratorForCodegenStage1(references);
/* 003 */ }
/* 004 */
/* 005 */ // codegenStageId=1
/* 006 */ final class GeneratedIteratorForCodegenStage1 extends org.apache.spark.sql.execution.BufferedRowIterator {
/* 007 */   private Object[] references;
/* 008 */   private scala.collection.Iterator[] inputs;
/* 009 */   private scala.collection.Iterator rdd_input_0;
/* 010 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[] project_mutableStateArray_0 = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[1];
/* 011 */
/* 012 */   public GeneratedIteratorForCodegenStage1(Object[] references) {
/* 013 */     this.references = references;
/* 014 */   }
/* 015 */
/* 016 */   public void init(int index, scala.collection.Iterator[] inputs) {
/* 017 */     partitionIndex = index;
/* 018 */     this.inputs = inputs;
/* 019 */     rdd_input_0 = inputs[0];
/* 020 */     project_mutableStateArray_0[0] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 021 */
/* 022 */   }
/* 023 */
/* 024 */   private void project_doConsume_0() throws java.io.IOException {
/* 025 */     // common sub-expressions
/* 026 */
/* 027 */     project_mutableStateArray_0[0].reset();
/* 028 */
/* 029 */     if (false) {
/* 030 */       project_mutableStateArray_0[0].setNullAt(0);
/* 031 */     } else {
/* 032 */       project_mutableStateArray_0[0].write(0, 1L);
/* 033 */     }
/* 034 */     append((project_mutableStateArray_0[0].getRow()));
/* 035 */
/* 036 */   }
/* 037 */
/* 038 */   protected void processNext() throws java.io.IOException {
/* 039 */     while ( rdd_input_0.hasNext()) {
/* 040 */       InternalRow rdd_row_0 = (InternalRow) rdd_input_0.next();
/* 041 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[0] /* numOutputRows */).add(1);
/* 042 */       project_doConsume_0();
/* 043 */       if (shouldStop()) return;
/* 044 */     }
/* 045 */   }
/* 046 */
/* 047 */ }

After this change, the corresponding code for subqueries are shown.

Found 3 WholeStageCodegen subtrees.
== Subtree 1 / 3 (maxMethodCodeSize:282; maxConstantPoolSize:206(0.31% used); numInnerClasses:0) ==
*(1) HashAggregate(keys=[], functions=[partial_min(id#0L)], output=[min#8L])
+- *(1) Range (1, 100, step=1, splits=12)

Generated code:
/* 001 */ public Object generate(Object[] references) {
/* 002 */   return new GeneratedIteratorForCodegenStage1(references);
/* 003 */ }
/* 004 */
/* 005 */ // codegenStageId=1
/* 006 */ final class GeneratedIteratorForCodegenStage1 extends org.apache.spark.sql.execution.BufferedRowIterator {
/* 007 */   private Object[] references;
/* 008 */   private scala.collection.Iterator[] inputs;
/* 009 */   private boolean agg_initAgg_0;
/* 010 */   private boolean agg_bufIsNull_0;
/* 011 */   private long agg_bufValue_0;
/* 012 */   private boolean range_initRange_0;
/* 013 */   private long range_nextIndex_0;
/* 014 */   private TaskContext range_taskContext_0;
/* 015 */   private InputMetrics range_inputMetrics_0;
/* 016 */   private long range_batchEnd_0;
/* 017 */   private long range_numElementsTodo_0;
/* 018 */   private boolean agg_agg_isNull_2_0;
/* 019 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[] range_mutableStateArray_0 = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[3];
/* 020 */
/* 021 */   public GeneratedIteratorForCodegenStage1(Object[] references) {
/* 022 */     this.references = references;
/* 023 */   }
/* 024 */
/* 025 */   public void init(int index, scala.collection.Iterator[] inputs) {
/* 026 */     partitionIndex = index;
/* 027 */     this.inputs = inputs;
/* 028 */
/* 029 */     range_taskContext_0 = TaskContext.get();
/* 030 */     range_inputMetrics_0 = range_taskContext_0.taskMetrics().inputMetrics();
/* 031 */     range_mutableStateArray_0[0] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 032 */     range_mutableStateArray_0[1] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 033 */     range_mutableStateArray_0[2] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 034 */
/* 035 */   }
/* 036 */
/* 037 */   private void agg_doAggregateWithoutKey_0() throws java.io.IOException {
/* 038 */     // initialize aggregation buffer
/* 039 */     agg_bufIsNull_0 = true;
/* 040 */     agg_bufValue_0 = -1L;
/* 041 */
/* 042 */     // initialize Range
/* 043 */     if (!range_initRange_0) {
/* 044 */       range_initRange_0 = true;
/* 045 */       initRange(partitionIndex);
/* 046 */     }
/* 047 */
/* 048 */     while (true) {
/* 049 */       if (range_nextIndex_0 == range_batchEnd_0) {
/* 050 */         long range_nextBatchTodo_0;
/* 051 */         if (range_numElementsTodo_0 > 1000L) {
/* 052 */           range_nextBatchTodo_0 = 1000L;
/* 053 */           range_numElementsTodo_0 -= 1000L;
/* 054 */         } else {
/* 055 */           range_nextBatchTodo_0 = range_numElementsTodo_0;
/* 056 */           range_numElementsTodo_0 = 0;
/* 057 */           if (range_nextBatchTodo_0 == 0) break;
/* 058 */         }
/* 059 */         range_batchEnd_0 += range_nextBatchTodo_0 * 1L;
/* 060 */       }
/* 061 */
/* 062 */       int range_localEnd_0 = (int)((range_batchEnd_0 - range_nextIndex_0) / 1L);
/* 063 */       for (int range_localIdx_0 = 0; range_localIdx_0 < range_localEnd_0; range_localIdx_0++) {
/* 064 */         long range_value_0 = ((long)range_localIdx_0 * 1L) + range_nextIndex_0;
/* 065 */
/* 066 */         agg_doConsume_0(range_value_0);
/* 067 */
/* 068 */         // shouldStop check is eliminated
/* 069 */       }
/* 070 */       range_nextIndex_0 = range_batchEnd_0;
/* 071 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[0] /* numOutputRows */).add(range_localEnd_0);
/* 072 */       range_inputMetrics_0.incRecordsRead(range_localEnd_0);
/* 073 */       range_taskContext_0.killTaskIfInterrupted();
/* 074 */     }
/* 075 */
/* 076 */   }
/* 077 */
/* 078 */   private void initRange(int idx) {
/* 079 */     java.math.BigInteger index = java.math.BigInteger.valueOf(idx);
/* 080 */     java.math.BigInteger numSlice = java.math.BigInteger.valueOf(12L);
/* 081 */     java.math.BigInteger numElement = java.math.BigInteger.valueOf(99L);
/* 082 */     java.math.BigInteger step = java.math.BigInteger.valueOf(1L);
/* 083 */     java.math.BigInteger start = java.math.BigInteger.valueOf(1L);
/* 084 */     long partitionEnd;
/* 085 */
/* 086 */     java.math.BigInteger st = index.multiply(numElement).divide(numSlice).multiply(step).add(start);
/* 087 */     if (st.compareTo(java.math.BigInteger.valueOf(Long.MAX_VALUE)) > 0) {
/* 088 */       range_nextIndex_0 = Long.MAX_VALUE;
/* 089 */     } else if (st.compareTo(java.math.BigInteger.valueOf(Long.MIN_VALUE)) < 0) {
/* 090 */       range_nextIndex_0 = Long.MIN_VALUE;
/* 091 */     } else {
/* 092 */       range_nextIndex_0 = st.longValue();
/* 093 */     }
/* 094 */     range_batchEnd_0 = range_nextIndex_0;
/* 095 */
/* 096 */     java.math.BigInteger end = index.add(java.math.BigInteger.ONE).multiply(numElement).divide(numSlice)
/* 097 */     .multiply(step).add(start);
/* 098 */     if (end.compareTo(java.math.BigInteger.valueOf(Long.MAX_VALUE)) > 0) {
/* 099 */       partitionEnd = Long.MAX_VALUE;
/* 100 */     } else if (end.compareTo(java.math.BigInteger.valueOf(Long.MIN_VALUE)) < 0) {
/* 101 */       partitionEnd = Long.MIN_VALUE;
/* 102 */     } else {
/* 103 */       partitionEnd = end.longValue();
/* 104 */     }
/* 105 */
/* 106 */     java.math.BigInteger startToEnd = java.math.BigInteger.valueOf(partitionEnd).subtract(
/* 107 */       java.math.BigInteger.valueOf(range_nextIndex_0));
/* 108 */     range_numElementsTodo_0  = startToEnd.divide(step).longValue();
/* 109 */     if (range_numElementsTodo_0 < 0) {
/* 110 */       range_numElementsTodo_0 = 0;
/* 111 */     } else if (startToEnd.remainder(step).compareTo(java.math.BigInteger.valueOf(0L)) != 0) {
/* 112 */       range_numElementsTodo_0++;
/* 113 */     }
/* 114 */   }
/* 115 */
/* 116 */   private void agg_doConsume_0(long agg_expr_0_0) throws java.io.IOException {
/* 117 */     // do aggregate
/* 118 */     // common sub-expressions
/* 119 */
/* 120 */     // evaluate aggregate functions and update aggregation buffers
/* 121 */
/* 122 */     agg_agg_isNull_2_0 = true;
/* 123 */     long agg_value_2 = -1L;
/* 124 */
/* 125 */     if (!agg_bufIsNull_0 && (agg_agg_isNull_2_0 ||
/* 126 */         agg_value_2 > agg_bufValue_0)) {
/* 127 */       agg_agg_isNull_2_0 = false;
/* 128 */       agg_value_2 = agg_bufValue_0;
/* 129 */     }
/* 130 */
/* 131 */     if (!false && (agg_agg_isNull_2_0 ||
/* 132 */         agg_value_2 > agg_expr_0_0)) {
/* 133 */       agg_agg_isNull_2_0 = false;
/* 134 */       agg_value_2 = agg_expr_0_0;
/* 135 */     }
/* 136 */
/* 137 */     agg_bufIsNull_0 = agg_agg_isNull_2_0;
/* 138 */     agg_bufValue_0 = agg_value_2;
/* 139 */
/* 140 */   }
/* 141 */
/* 142 */   protected void processNext() throws java.io.IOException {
/* 143 */     while (!agg_initAgg_0) {
/* 144 */       agg_initAgg_0 = true;
/* 145 */       long agg_beforeAgg_0 = System.nanoTime();
/* 146 */       agg_doAggregateWithoutKey_0();
/* 147 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[2] /* aggTime */).add((System.nanoTime() - agg_beforeAgg_0) / 1000000);
/* 148 */
/* 149 */       // output the result
/* 150 */
/* 151 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[1] /* numOutputRows */).add(1);
/* 152 */       range_mutableStateArray_0[2].reset();
/* 153 */
/* 154 */       range_mutableStateArray_0[2].zeroOutNullBytes();
/* 155 */
/* 156 */       if (agg_bufIsNull_0) {
/* 157 */         range_mutableStateArray_0[2].setNullAt(0);
/* 158 */       } else {
/* 159 */         range_mutableStateArray_0[2].write(0, agg_bufValue_0);
/* 160 */       }
/* 161 */       append((range_mutableStateArray_0[2].getRow()));
/* 162 */     }
/* 163 */   }
/* 164 */
/* 165 */ }

Why are the changes needed?

For better debuggability.

Does this PR introduce any user-facing change?

Yes. After this change, users can see subquery code by EXPLAIN CODEGEN.

How was this patch tested?

New test.

@github-actions github-actions bot added the SQL label Dec 19, 2020
@SparkQA
Copy link

SparkQA commented Dec 20, 2020

Test build #133085 has finished for PR 30859 at commit 09c6fd1.

  • This patch passes all tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

def findSubtrees(plan: SparkPlan): Unit = {
plan transform {
case s: WholeStageCodegenExec =>
codegenSubtrees += s
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The code below has the same issue?

val codegenSubtrees = new collection.mutable.HashSet[WholeStageCodegenExec]()
plan foreach {
case s: WholeStageCodegenExec =>
codegenSubtrees += s
case _ =>
}

.write
.format("parquet")
.mode("overwrite")
.saveAsTable("df1")
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit: for better test performance, could you use a temporary view instead?

@maropu
Copy link
Member

maropu commented Dec 20, 2020

Looks fine otherwise.

@SparkQA
Copy link

SparkQA commented Dec 20, 2020

Kubernetes integration test starting
URL: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder-K8s/37695/

@SparkQA
Copy link

SparkQA commented Dec 20, 2020

Kubernetes integration test status failure
URL: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder-K8s/37695/

@SparkQA
Copy link

SparkQA commented Dec 20, 2020

Kubernetes integration test starting
URL: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder-K8s/37696/

@SparkQA
Copy link

SparkQA commented Dec 20, 2020

Kubernetes integration test status failure
URL: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder-K8s/37696/

@SparkQA
Copy link

SparkQA commented Dec 20, 2020

Test build #133097 has finished for PR 30859 at commit 022d363.

  • This patch fails Spark unit tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

@SparkQA
Copy link

SparkQA commented Dec 20, 2020

Test build #133095 has finished for PR 30859 at commit 26551bf.

  • This patch fails SparkR unit tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

@SparkQA
Copy link

SparkQA commented Dec 20, 2020

Test build #133096 has finished for PR 30859 at commit 0f6a53b.

  • This patch fails Spark unit tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

@SparkQA
Copy link

SparkQA commented Dec 20, 2020

Kubernetes integration test starting
URL: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder-K8s/37712/

@sarutak sarutak changed the title [SPARK-33853][SQL] EXPLAIN CODEGEN doesn't show subquery code [SPARK-33853][SQL] EXPLAIN CODEGEN and BenchmarkQueryTest don't show subquery code Dec 20, 2020
@SparkQA
Copy link

SparkQA commented Dec 20, 2020

Kubernetes integration test status failure
URL: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder-K8s/37712/

@SparkQA
Copy link

SparkQA commented Dec 20, 2020

Test build #133111 has finished for PR 30859 at commit c338832.

  • This patch passes all tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

@SparkQA
Copy link

SparkQA commented Dec 20, 2020

Test build #133113 has finished for PR 30859 at commit 13cadeb.

  • This patch fails Spark unit tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

@maropu
Copy link
Member

maropu commented Dec 21, 2020

retest this please

@dongjoon-hyun
Copy link
Member

+1, LGTM. (Pending CIs)
Thank you, @sarutak and @maropu .

@SparkQA
Copy link

SparkQA commented Dec 21, 2020

Kubernetes integration test starting
URL: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder-K8s/37717/

@SparkQA
Copy link

SparkQA commented Dec 21, 2020

Kubernetes integration test status failure
URL: https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder-K8s/37717/

@SparkQA
Copy link

SparkQA commented Dec 21, 2020

Test build #133118 has finished for PR 30859 at commit 13cadeb.

  • This patch passes all tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

dongjoon-hyun pushed a commit that referenced this pull request Dec 21, 2020
…subquery code

### What changes were proposed in this pull request?

This PR fixes an issue that `EXPLAIN CODEGEN` and `BenchmarkQueryTest` don't show the corresponding code for subqueries.

The following example is about `EXPLAIN CODEGEN`.
```
spark.conf.set("spark.sql.adaptive.enabled", "false")
val df = spark.range(1, 100)
df.createTempView("df")
spark.sql("SELECT (SELECT min(id) AS v FROM df)").explain("CODEGEN")

scala> spark.sql("SELECT (SELECT min(id) AS v FROM df)").explain("CODEGEN")
Found 1 WholeStageCodegen subtrees.
== Subtree 1 / 1 (maxMethodCodeSize:55; maxConstantPoolSize:97(0.15% used); numInnerClasses:0) ==
*(1) Project [Subquery scalar-subquery#3, [id=#24] AS scalarsubquery()#5L]
:  +- Subquery scalar-subquery#3, [id=#24]
:     +- *(2) HashAggregate(keys=[], functions=[min(id#0L)], output=[v#2L])
:        +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [id=#20]
:           +- *(1) HashAggregate(keys=[], functions=[partial_min(id#0L)], output=[min#8L])
:              +- *(1) Range (1, 100, step=1, splits=12)
+- *(1) Scan OneRowRelation[]

Generated code:
/* 001 */ public Object generate(Object[] references) {
/* 002 */   return new GeneratedIteratorForCodegenStage1(references);
/* 003 */ }
/* 004 */
/* 005 */ // codegenStageId=1
/* 006 */ final class GeneratedIteratorForCodegenStage1 extends org.apache.spark.sql.execution.BufferedRowIterator {
/* 007 */   private Object[] references;
/* 008 */   private scala.collection.Iterator[] inputs;
/* 009 */   private scala.collection.Iterator rdd_input_0;
/* 010 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[] project_mutableStateArray_0 = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[1];
/* 011 */
/* 012 */   public GeneratedIteratorForCodegenStage1(Object[] references) {
/* 013 */     this.references = references;
/* 014 */   }
/* 015 */
/* 016 */   public void init(int index, scala.collection.Iterator[] inputs) {
/* 017 */     partitionIndex = index;
/* 018 */     this.inputs = inputs;
/* 019 */     rdd_input_0 = inputs[0];
/* 020 */     project_mutableStateArray_0[0] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 021 */
/* 022 */   }
/* 023 */
/* 024 */   private void project_doConsume_0() throws java.io.IOException {
/* 025 */     // common sub-expressions
/* 026 */
/* 027 */     project_mutableStateArray_0[0].reset();
/* 028 */
/* 029 */     if (false) {
/* 030 */       project_mutableStateArray_0[0].setNullAt(0);
/* 031 */     } else {
/* 032 */       project_mutableStateArray_0[0].write(0, 1L);
/* 033 */     }
/* 034 */     append((project_mutableStateArray_0[0].getRow()));
/* 035 */
/* 036 */   }
/* 037 */
/* 038 */   protected void processNext() throws java.io.IOException {
/* 039 */     while ( rdd_input_0.hasNext()) {
/* 040 */       InternalRow rdd_row_0 = (InternalRow) rdd_input_0.next();
/* 041 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[0] /* numOutputRows */).add(1);
/* 042 */       project_doConsume_0();
/* 043 */       if (shouldStop()) return;
/* 044 */     }
/* 045 */   }
/* 046 */
/* 047 */ }
```

After this change, the corresponding code for subqueries are shown.
```
Found 3 WholeStageCodegen subtrees.
== Subtree 1 / 3 (maxMethodCodeSize:282; maxConstantPoolSize:206(0.31% used); numInnerClasses:0) ==
*(1) HashAggregate(keys=[], functions=[partial_min(id#0L)], output=[min#8L])
+- *(1) Range (1, 100, step=1, splits=12)

Generated code:
/* 001 */ public Object generate(Object[] references) {
/* 002 */   return new GeneratedIteratorForCodegenStage1(references);
/* 003 */ }
/* 004 */
/* 005 */ // codegenStageId=1
/* 006 */ final class GeneratedIteratorForCodegenStage1 extends org.apache.spark.sql.execution.BufferedRowIterator {
/* 007 */   private Object[] references;
/* 008 */   private scala.collection.Iterator[] inputs;
/* 009 */   private boolean agg_initAgg_0;
/* 010 */   private boolean agg_bufIsNull_0;
/* 011 */   private long agg_bufValue_0;
/* 012 */   private boolean range_initRange_0;
/* 013 */   private long range_nextIndex_0;
/* 014 */   private TaskContext range_taskContext_0;
/* 015 */   private InputMetrics range_inputMetrics_0;
/* 016 */   private long range_batchEnd_0;
/* 017 */   private long range_numElementsTodo_0;
/* 018 */   private boolean agg_agg_isNull_2_0;
/* 019 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[] range_mutableStateArray_0 = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[3];
/* 020 */
/* 021 */   public GeneratedIteratorForCodegenStage1(Object[] references) {
/* 022 */     this.references = references;
/* 023 */   }
/* 024 */
/* 025 */   public void init(int index, scala.collection.Iterator[] inputs) {
/* 026 */     partitionIndex = index;
/* 027 */     this.inputs = inputs;
/* 028 */
/* 029 */     range_taskContext_0 = TaskContext.get();
/* 030 */     range_inputMetrics_0 = range_taskContext_0.taskMetrics().inputMetrics();
/* 031 */     range_mutableStateArray_0[0] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 032 */     range_mutableStateArray_0[1] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 033 */     range_mutableStateArray_0[2] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 034 */
/* 035 */   }
/* 036 */
/* 037 */   private void agg_doAggregateWithoutKey_0() throws java.io.IOException {
/* 038 */     // initialize aggregation buffer
/* 039 */     agg_bufIsNull_0 = true;
/* 040 */     agg_bufValue_0 = -1L;
/* 041 */
/* 042 */     // initialize Range
/* 043 */     if (!range_initRange_0) {
/* 044 */       range_initRange_0 = true;
/* 045 */       initRange(partitionIndex);
/* 046 */     }
/* 047 */
/* 048 */     while (true) {
/* 049 */       if (range_nextIndex_0 == range_batchEnd_0) {
/* 050 */         long range_nextBatchTodo_0;
/* 051 */         if (range_numElementsTodo_0 > 1000L) {
/* 052 */           range_nextBatchTodo_0 = 1000L;
/* 053 */           range_numElementsTodo_0 -= 1000L;
/* 054 */         } else {
/* 055 */           range_nextBatchTodo_0 = range_numElementsTodo_0;
/* 056 */           range_numElementsTodo_0 = 0;
/* 057 */           if (range_nextBatchTodo_0 == 0) break;
/* 058 */         }
/* 059 */         range_batchEnd_0 += range_nextBatchTodo_0 * 1L;
/* 060 */       }
/* 061 */
/* 062 */       int range_localEnd_0 = (int)((range_batchEnd_0 - range_nextIndex_0) / 1L);
/* 063 */       for (int range_localIdx_0 = 0; range_localIdx_0 < range_localEnd_0; range_localIdx_0++) {
/* 064 */         long range_value_0 = ((long)range_localIdx_0 * 1L) + range_nextIndex_0;
/* 065 */
/* 066 */         agg_doConsume_0(range_value_0);
/* 067 */
/* 068 */         // shouldStop check is eliminated
/* 069 */       }
/* 070 */       range_nextIndex_0 = range_batchEnd_0;
/* 071 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[0] /* numOutputRows */).add(range_localEnd_0);
/* 072 */       range_inputMetrics_0.incRecordsRead(range_localEnd_0);
/* 073 */       range_taskContext_0.killTaskIfInterrupted();
/* 074 */     }
/* 075 */
/* 076 */   }
/* 077 */
/* 078 */   private void initRange(int idx) {
/* 079 */     java.math.BigInteger index = java.math.BigInteger.valueOf(idx);
/* 080 */     java.math.BigInteger numSlice = java.math.BigInteger.valueOf(12L);
/* 081 */     java.math.BigInteger numElement = java.math.BigInteger.valueOf(99L);
/* 082 */     java.math.BigInteger step = java.math.BigInteger.valueOf(1L);
/* 083 */     java.math.BigInteger start = java.math.BigInteger.valueOf(1L);
/* 084 */     long partitionEnd;
/* 085 */
/* 086 */     java.math.BigInteger st = index.multiply(numElement).divide(numSlice).multiply(step).add(start);
/* 087 */     if (st.compareTo(java.math.BigInteger.valueOf(Long.MAX_VALUE)) > 0) {
/* 088 */       range_nextIndex_0 = Long.MAX_VALUE;
/* 089 */     } else if (st.compareTo(java.math.BigInteger.valueOf(Long.MIN_VALUE)) < 0) {
/* 090 */       range_nextIndex_0 = Long.MIN_VALUE;
/* 091 */     } else {
/* 092 */       range_nextIndex_0 = st.longValue();
/* 093 */     }
/* 094 */     range_batchEnd_0 = range_nextIndex_0;
/* 095 */
/* 096 */     java.math.BigInteger end = index.add(java.math.BigInteger.ONE).multiply(numElement).divide(numSlice)
/* 097 */     .multiply(step).add(start);
/* 098 */     if (end.compareTo(java.math.BigInteger.valueOf(Long.MAX_VALUE)) > 0) {
/* 099 */       partitionEnd = Long.MAX_VALUE;
/* 100 */     } else if (end.compareTo(java.math.BigInteger.valueOf(Long.MIN_VALUE)) < 0) {
/* 101 */       partitionEnd = Long.MIN_VALUE;
/* 102 */     } else {
/* 103 */       partitionEnd = end.longValue();
/* 104 */     }
/* 105 */
/* 106 */     java.math.BigInteger startToEnd = java.math.BigInteger.valueOf(partitionEnd).subtract(
/* 107 */       java.math.BigInteger.valueOf(range_nextIndex_0));
/* 108 */     range_numElementsTodo_0  = startToEnd.divide(step).longValue();
/* 109 */     if (range_numElementsTodo_0 < 0) {
/* 110 */       range_numElementsTodo_0 = 0;
/* 111 */     } else if (startToEnd.remainder(step).compareTo(java.math.BigInteger.valueOf(0L)) != 0) {
/* 112 */       range_numElementsTodo_0++;
/* 113 */     }
/* 114 */   }
/* 115 */
/* 116 */   private void agg_doConsume_0(long agg_expr_0_0) throws java.io.IOException {
/* 117 */     // do aggregate
/* 118 */     // common sub-expressions
/* 119 */
/* 120 */     // evaluate aggregate functions and update aggregation buffers
/* 121 */
/* 122 */     agg_agg_isNull_2_0 = true;
/* 123 */     long agg_value_2 = -1L;
/* 124 */
/* 125 */     if (!agg_bufIsNull_0 && (agg_agg_isNull_2_0 ||
/* 126 */         agg_value_2 > agg_bufValue_0)) {
/* 127 */       agg_agg_isNull_2_0 = false;
/* 128 */       agg_value_2 = agg_bufValue_0;
/* 129 */     }
/* 130 */
/* 131 */     if (!false && (agg_agg_isNull_2_0 ||
/* 132 */         agg_value_2 > agg_expr_0_0)) {
/* 133 */       agg_agg_isNull_2_0 = false;
/* 134 */       agg_value_2 = agg_expr_0_0;
/* 135 */     }
/* 136 */
/* 137 */     agg_bufIsNull_0 = agg_agg_isNull_2_0;
/* 138 */     agg_bufValue_0 = agg_value_2;
/* 139 */
/* 140 */   }
/* 141 */
/* 142 */   protected void processNext() throws java.io.IOException {
/* 143 */     while (!agg_initAgg_0) {
/* 144 */       agg_initAgg_0 = true;
/* 145 */       long agg_beforeAgg_0 = System.nanoTime();
/* 146 */       agg_doAggregateWithoutKey_0();
/* 147 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[2] /* aggTime */).add((System.nanoTime() - agg_beforeAgg_0) / 1000000);
/* 148 */
/* 149 */       // output the result
/* 150 */
/* 151 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[1] /* numOutputRows */).add(1);
/* 152 */       range_mutableStateArray_0[2].reset();
/* 153 */
/* 154 */       range_mutableStateArray_0[2].zeroOutNullBytes();
/* 155 */
/* 156 */       if (agg_bufIsNull_0) {
/* 157 */         range_mutableStateArray_0[2].setNullAt(0);
/* 158 */       } else {
/* 159 */         range_mutableStateArray_0[2].write(0, agg_bufValue_0);
/* 160 */       }
/* 161 */       append((range_mutableStateArray_0[2].getRow()));
/* 162 */     }
/* 163 */   }
/* 164 */
/* 165 */ }
```

### Why are the changes needed?

For better debuggability.

### Does this PR introduce _any_ user-facing change?

Yes. After this change, users can see subquery code by `EXPLAIN CODEGEN`.

### How was this patch tested?

New test.

Closes #30859 from sarutak/explain-codegen-subqueries.

Authored-by: Kousuke Saruta <sarutak@oss.nttdata.com>
Signed-off-by: Dongjoon Hyun <dhyun@apple.com>
(cherry picked from commit f4e1069)
Signed-off-by: Dongjoon Hyun <dhyun@apple.com>
dongjoon-hyun pushed a commit that referenced this pull request Dec 21, 2020
…subquery code

### What changes were proposed in this pull request?

This PR fixes an issue that `EXPLAIN CODEGEN` and `BenchmarkQueryTest` don't show the corresponding code for subqueries.

The following example is about `EXPLAIN CODEGEN`.
```
spark.conf.set("spark.sql.adaptive.enabled", "false")
val df = spark.range(1, 100)
df.createTempView("df")
spark.sql("SELECT (SELECT min(id) AS v FROM df)").explain("CODEGEN")

scala> spark.sql("SELECT (SELECT min(id) AS v FROM df)").explain("CODEGEN")
Found 1 WholeStageCodegen subtrees.
== Subtree 1 / 1 (maxMethodCodeSize:55; maxConstantPoolSize:97(0.15% used); numInnerClasses:0) ==
*(1) Project [Subquery scalar-subquery#3, [id=#24] AS scalarsubquery()#5L]
:  +- Subquery scalar-subquery#3, [id=#24]
:     +- *(2) HashAggregate(keys=[], functions=[min(id#0L)], output=[v#2L])
:        +- Exchange SinglePartition, ENSURE_REQUIREMENTS, [id=#20]
:           +- *(1) HashAggregate(keys=[], functions=[partial_min(id#0L)], output=[min#8L])
:              +- *(1) Range (1, 100, step=1, splits=12)
+- *(1) Scan OneRowRelation[]

Generated code:
/* 001 */ public Object generate(Object[] references) {
/* 002 */   return new GeneratedIteratorForCodegenStage1(references);
/* 003 */ }
/* 004 */
/* 005 */ // codegenStageId=1
/* 006 */ final class GeneratedIteratorForCodegenStage1 extends org.apache.spark.sql.execution.BufferedRowIterator {
/* 007 */   private Object[] references;
/* 008 */   private scala.collection.Iterator[] inputs;
/* 009 */   private scala.collection.Iterator rdd_input_0;
/* 010 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[] project_mutableStateArray_0 = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[1];
/* 011 */
/* 012 */   public GeneratedIteratorForCodegenStage1(Object[] references) {
/* 013 */     this.references = references;
/* 014 */   }
/* 015 */
/* 016 */   public void init(int index, scala.collection.Iterator[] inputs) {
/* 017 */     partitionIndex = index;
/* 018 */     this.inputs = inputs;
/* 019 */     rdd_input_0 = inputs[0];
/* 020 */     project_mutableStateArray_0[0] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 021 */
/* 022 */   }
/* 023 */
/* 024 */   private void project_doConsume_0() throws java.io.IOException {
/* 025 */     // common sub-expressions
/* 026 */
/* 027 */     project_mutableStateArray_0[0].reset();
/* 028 */
/* 029 */     if (false) {
/* 030 */       project_mutableStateArray_0[0].setNullAt(0);
/* 031 */     } else {
/* 032 */       project_mutableStateArray_0[0].write(0, 1L);
/* 033 */     }
/* 034 */     append((project_mutableStateArray_0[0].getRow()));
/* 035 */
/* 036 */   }
/* 037 */
/* 038 */   protected void processNext() throws java.io.IOException {
/* 039 */     while ( rdd_input_0.hasNext()) {
/* 040 */       InternalRow rdd_row_0 = (InternalRow) rdd_input_0.next();
/* 041 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[0] /* numOutputRows */).add(1);
/* 042 */       project_doConsume_0();
/* 043 */       if (shouldStop()) return;
/* 044 */     }
/* 045 */   }
/* 046 */
/* 047 */ }
```

After this change, the corresponding code for subqueries are shown.
```
Found 3 WholeStageCodegen subtrees.
== Subtree 1 / 3 (maxMethodCodeSize:282; maxConstantPoolSize:206(0.31% used); numInnerClasses:0) ==
*(1) HashAggregate(keys=[], functions=[partial_min(id#0L)], output=[min#8L])
+- *(1) Range (1, 100, step=1, splits=12)

Generated code:
/* 001 */ public Object generate(Object[] references) {
/* 002 */   return new GeneratedIteratorForCodegenStage1(references);
/* 003 */ }
/* 004 */
/* 005 */ // codegenStageId=1
/* 006 */ final class GeneratedIteratorForCodegenStage1 extends org.apache.spark.sql.execution.BufferedRowIterator {
/* 007 */   private Object[] references;
/* 008 */   private scala.collection.Iterator[] inputs;
/* 009 */   private boolean agg_initAgg_0;
/* 010 */   private boolean agg_bufIsNull_0;
/* 011 */   private long agg_bufValue_0;
/* 012 */   private boolean range_initRange_0;
/* 013 */   private long range_nextIndex_0;
/* 014 */   private TaskContext range_taskContext_0;
/* 015 */   private InputMetrics range_inputMetrics_0;
/* 016 */   private long range_batchEnd_0;
/* 017 */   private long range_numElementsTodo_0;
/* 018 */   private boolean agg_agg_isNull_2_0;
/* 019 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[] range_mutableStateArray_0 = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[3];
/* 020 */
/* 021 */   public GeneratedIteratorForCodegenStage1(Object[] references) {
/* 022 */     this.references = references;
/* 023 */   }
/* 024 */
/* 025 */   public void init(int index, scala.collection.Iterator[] inputs) {
/* 026 */     partitionIndex = index;
/* 027 */     this.inputs = inputs;
/* 028 */
/* 029 */     range_taskContext_0 = TaskContext.get();
/* 030 */     range_inputMetrics_0 = range_taskContext_0.taskMetrics().inputMetrics();
/* 031 */     range_mutableStateArray_0[0] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 032 */     range_mutableStateArray_0[1] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 033 */     range_mutableStateArray_0[2] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 034 */
/* 035 */   }
/* 036 */
/* 037 */   private void agg_doAggregateWithoutKey_0() throws java.io.IOException {
/* 038 */     // initialize aggregation buffer
/* 039 */     agg_bufIsNull_0 = true;
/* 040 */     agg_bufValue_0 = -1L;
/* 041 */
/* 042 */     // initialize Range
/* 043 */     if (!range_initRange_0) {
/* 044 */       range_initRange_0 = true;
/* 045 */       initRange(partitionIndex);
/* 046 */     }
/* 047 */
/* 048 */     while (true) {
/* 049 */       if (range_nextIndex_0 == range_batchEnd_0) {
/* 050 */         long range_nextBatchTodo_0;
/* 051 */         if (range_numElementsTodo_0 > 1000L) {
/* 052 */           range_nextBatchTodo_0 = 1000L;
/* 053 */           range_numElementsTodo_0 -= 1000L;
/* 054 */         } else {
/* 055 */           range_nextBatchTodo_0 = range_numElementsTodo_0;
/* 056 */           range_numElementsTodo_0 = 0;
/* 057 */           if (range_nextBatchTodo_0 == 0) break;
/* 058 */         }
/* 059 */         range_batchEnd_0 += range_nextBatchTodo_0 * 1L;
/* 060 */       }
/* 061 */
/* 062 */       int range_localEnd_0 = (int)((range_batchEnd_0 - range_nextIndex_0) / 1L);
/* 063 */       for (int range_localIdx_0 = 0; range_localIdx_0 < range_localEnd_0; range_localIdx_0++) {
/* 064 */         long range_value_0 = ((long)range_localIdx_0 * 1L) + range_nextIndex_0;
/* 065 */
/* 066 */         agg_doConsume_0(range_value_0);
/* 067 */
/* 068 */         // shouldStop check is eliminated
/* 069 */       }
/* 070 */       range_nextIndex_0 = range_batchEnd_0;
/* 071 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[0] /* numOutputRows */).add(range_localEnd_0);
/* 072 */       range_inputMetrics_0.incRecordsRead(range_localEnd_0);
/* 073 */       range_taskContext_0.killTaskIfInterrupted();
/* 074 */     }
/* 075 */
/* 076 */   }
/* 077 */
/* 078 */   private void initRange(int idx) {
/* 079 */     java.math.BigInteger index = java.math.BigInteger.valueOf(idx);
/* 080 */     java.math.BigInteger numSlice = java.math.BigInteger.valueOf(12L);
/* 081 */     java.math.BigInteger numElement = java.math.BigInteger.valueOf(99L);
/* 082 */     java.math.BigInteger step = java.math.BigInteger.valueOf(1L);
/* 083 */     java.math.BigInteger start = java.math.BigInteger.valueOf(1L);
/* 084 */     long partitionEnd;
/* 085 */
/* 086 */     java.math.BigInteger st = index.multiply(numElement).divide(numSlice).multiply(step).add(start);
/* 087 */     if (st.compareTo(java.math.BigInteger.valueOf(Long.MAX_VALUE)) > 0) {
/* 088 */       range_nextIndex_0 = Long.MAX_VALUE;
/* 089 */     } else if (st.compareTo(java.math.BigInteger.valueOf(Long.MIN_VALUE)) < 0) {
/* 090 */       range_nextIndex_0 = Long.MIN_VALUE;
/* 091 */     } else {
/* 092 */       range_nextIndex_0 = st.longValue();
/* 093 */     }
/* 094 */     range_batchEnd_0 = range_nextIndex_0;
/* 095 */
/* 096 */     java.math.BigInteger end = index.add(java.math.BigInteger.ONE).multiply(numElement).divide(numSlice)
/* 097 */     .multiply(step).add(start);
/* 098 */     if (end.compareTo(java.math.BigInteger.valueOf(Long.MAX_VALUE)) > 0) {
/* 099 */       partitionEnd = Long.MAX_VALUE;
/* 100 */     } else if (end.compareTo(java.math.BigInteger.valueOf(Long.MIN_VALUE)) < 0) {
/* 101 */       partitionEnd = Long.MIN_VALUE;
/* 102 */     } else {
/* 103 */       partitionEnd = end.longValue();
/* 104 */     }
/* 105 */
/* 106 */     java.math.BigInteger startToEnd = java.math.BigInteger.valueOf(partitionEnd).subtract(
/* 107 */       java.math.BigInteger.valueOf(range_nextIndex_0));
/* 108 */     range_numElementsTodo_0  = startToEnd.divide(step).longValue();
/* 109 */     if (range_numElementsTodo_0 < 0) {
/* 110 */       range_numElementsTodo_0 = 0;
/* 111 */     } else if (startToEnd.remainder(step).compareTo(java.math.BigInteger.valueOf(0L)) != 0) {
/* 112 */       range_numElementsTodo_0++;
/* 113 */     }
/* 114 */   }
/* 115 */
/* 116 */   private void agg_doConsume_0(long agg_expr_0_0) throws java.io.IOException {
/* 117 */     // do aggregate
/* 118 */     // common sub-expressions
/* 119 */
/* 120 */     // evaluate aggregate functions and update aggregation buffers
/* 121 */
/* 122 */     agg_agg_isNull_2_0 = true;
/* 123 */     long agg_value_2 = -1L;
/* 124 */
/* 125 */     if (!agg_bufIsNull_0 && (agg_agg_isNull_2_0 ||
/* 126 */         agg_value_2 > agg_bufValue_0)) {
/* 127 */       agg_agg_isNull_2_0 = false;
/* 128 */       agg_value_2 = agg_bufValue_0;
/* 129 */     }
/* 130 */
/* 131 */     if (!false && (agg_agg_isNull_2_0 ||
/* 132 */         agg_value_2 > agg_expr_0_0)) {
/* 133 */       agg_agg_isNull_2_0 = false;
/* 134 */       agg_value_2 = agg_expr_0_0;
/* 135 */     }
/* 136 */
/* 137 */     agg_bufIsNull_0 = agg_agg_isNull_2_0;
/* 138 */     agg_bufValue_0 = agg_value_2;
/* 139 */
/* 140 */   }
/* 141 */
/* 142 */   protected void processNext() throws java.io.IOException {
/* 143 */     while (!agg_initAgg_0) {
/* 144 */       agg_initAgg_0 = true;
/* 145 */       long agg_beforeAgg_0 = System.nanoTime();
/* 146 */       agg_doAggregateWithoutKey_0();
/* 147 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[2] /* aggTime */).add((System.nanoTime() - agg_beforeAgg_0) / 1000000);
/* 148 */
/* 149 */       // output the result
/* 150 */
/* 151 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[1] /* numOutputRows */).add(1);
/* 152 */       range_mutableStateArray_0[2].reset();
/* 153 */
/* 154 */       range_mutableStateArray_0[2].zeroOutNullBytes();
/* 155 */
/* 156 */       if (agg_bufIsNull_0) {
/* 157 */         range_mutableStateArray_0[2].setNullAt(0);
/* 158 */       } else {
/* 159 */         range_mutableStateArray_0[2].write(0, agg_bufValue_0);
/* 160 */       }
/* 161 */       append((range_mutableStateArray_0[2].getRow()));
/* 162 */     }
/* 163 */   }
/* 164 */
/* 165 */ }
```

### Why are the changes needed?

For better debuggability.

### Does this PR introduce _any_ user-facing change?

Yes. After this change, users can see subquery code by `EXPLAIN CODEGEN`.

### How was this patch tested?

New test.

Closes #30859 from sarutak/explain-codegen-subqueries.

Authored-by: Kousuke Saruta <sarutak@oss.nttdata.com>
Signed-off-by: Dongjoon Hyun <dhyun@apple.com>
(cherry picked from commit f4e1069)
Signed-off-by: Dongjoon Hyun <dhyun@apple.com>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants