Skip to content

Commit

Permalink
[SPARK-5539][MLLIB] LDA guide
Browse files Browse the repository at this point in the history
This is the LDA user guide from jkbradley with Java and Scala code example.

Author: Xiangrui Meng <meng@databricks.com>
Author: Joseph K. Bradley <joseph@databricks.com>

Closes #4465 from mengxr/lda-guide and squashes the following commits:

6dcb7d1 [Xiangrui Meng] update java example in the user guide
76169ff [Xiangrui Meng] update java example
36c3ae2 [Xiangrui Meng] Merge remote-tracking branch 'apache/master' into lda-guide
c2a1efe [Joseph K. Bradley] Added LDA programming guide, plus Java example (which is in the guide and probably should be removed).
  • Loading branch information
mengxr committed Feb 9, 2015
1 parent 4575c56 commit 855d12a
Show file tree
Hide file tree
Showing 3 changed files with 215 additions and 1 deletion.
12 changes: 12 additions & 0 deletions data/mllib/sample_lda_data.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
1 2 6 0 2 3 1 1 0 0 3
1 3 0 1 3 0 0 2 0 0 1
1 4 1 0 0 4 9 0 1 2 0
2 1 0 3 0 0 5 0 2 3 9
3 1 1 9 3 0 2 0 0 1 3
4 2 0 3 4 5 1 1 1 4 0
2 1 0 3 0 0 5 0 2 2 9
1 1 1 9 2 1 2 0 0 1 3
4 4 0 3 4 2 1 3 0 0 0
2 8 2 0 3 0 2 0 2 7 2
1 1 1 9 0 2 2 0 0 3 3
4 1 0 0 4 5 1 3 0 1 0
129 changes: 128 additions & 1 deletion docs/mllib-clustering.md
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ has the following parameters:

Power iteration clustering is a scalable and efficient algorithm for clustering points given pointwise mutual affinity values. Internally the algorithm:

* accepts a [Graph](https://spark.apache.org/docs/0.9.2/api/graphx/index.html#org.apache.spark.graphx.Graph) that represents a normalized pairwise affinity between all input points.
* accepts a [Graph](api/graphx/index.html#org.apache.spark.graphx.Graph) that represents a normalized pairwise affinity between all input points.
* calculates the principal eigenvalue and eigenvector
* Clusters each of the input points according to their principal eigenvector component value

Expand All @@ -71,6 +71,35 @@ Example outputs for a dataset inspired by the paper - but with five clusters ins
<!-- Images are downsized intentionally to improve quality on retina displays -->
</p>

### Latent Dirichlet Allocation (LDA)

[Latent Dirichlet Allocation (LDA)](http://en.wikipedia.org/wiki/Latent_Dirichlet_allocation)
is a topic model which infers topics from a collection of text documents.
LDA can be thought of as a clustering algorithm as follows:

* Topics correspond to cluster centers, and documents correspond to examples (rows) in a dataset.
* Topics and documents both exist in a feature space, where feature vectors are vectors of word counts.
* Rather than estimating a clustering using a traditional distance, LDA uses a function based
on a statistical model of how text documents are generated.

LDA takes in a collection of documents as vectors of word counts.
It learns clustering using [expectation-maximization](http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm)
on the likelihood function. After fitting on the documents, LDA provides:

* Topics: Inferred topics, each of which is a probability distribution over terms (words).
* Topic distributions for documents: For each document in the training set, LDA gives a probability distribution over topics.

LDA takes the following parameters:

* `k`: Number of topics (i.e., cluster centers)
* `maxIterations`: Limit on the number of iterations of EM used for learning
* `docConcentration`: Hyperparameter for prior over documents' distributions over topics. Currently must be > 1, where larger values encourage smoother inferred distributions.
* `topicConcentration`: Hyperparameter for prior over topics' distributions over terms (words). Currently must be > 1, where larger values encourage smoother inferred distributions.
* `checkpointInterval`: If using checkpointing (set in the Spark configuration), this parameter specifies the frequency with which checkpoints will be created. If `maxIterations` is large, using checkpointing can help reduce shuffle file sizes on disk and help with failure recovery.

*Note*: LDA is a new feature with some missing functionality. In particular, it does not yet
support prediction on new documents, and it does not have a Python API. These will be added in the future.

### Examples

#### k-means
Expand Down Expand Up @@ -293,6 +322,104 @@ for i in range(2):

</div>

#### Latent Dirichlet Allocation (LDA) Example

In the following example, we load word count vectors representing a corpus of documents.
We then use [LDA](api/scala/index.html#org.apache.spark.mllib.clustering.LDA)
to infer three topics from the documents. The number of desired clusters is passed
to the algorithm. We then output the topics, represented as probability distributions over words.

<div class="codetabs">
<div data-lang="scala" markdown="1">

{% highlight scala %}
import org.apache.spark.mllib.clustering.LDA
import org.apache.spark.mllib.linalg.Vectors

// Load and parse the data
val data = sc.textFile("data/mllib/sample_lda_data.txt")
val parsedData = data.map(s => Vectors.dense(s.trim.split(' ').map(_.toDouble)))
// Index documents with unique IDs
val corpus = parsedData.zipWithIndex.map(_.swap).cache()

// Cluster the documents into three topics using LDA
val ldaModel = new LDA().setK(3).run(corpus)

// Output topics. Each is a distribution over words (matching word count vectors)
println("Learned topics (as distributions over vocab of " + ldaModel.vocabSize + " words):")
val topics = ldaModel.topicsMatrix
for (topic <- Range(0, 3)) {
print("Topic " + topic + ":")
for (word <- Range(0, ldaModel.vocabSize)) { print(" " + topics(word, topic)); }
println()
}
{% endhighlight %}
</div>

<div data-lang="java" markdown="1">
{% highlight java %}
import scala.Tuple2;

import org.apache.spark.api.java.*;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.mllib.clustering.DistributedLDAModel;
import org.apache.spark.mllib.clustering.LDA;
import org.apache.spark.mllib.linalg.Matrix;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.SparkConf;

public class JavaLDAExample {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("LDA Example");
JavaSparkContext sc = new JavaSparkContext(conf);

// Load and parse the data
String path = "data/mllib/sample_lda_data.txt";
JavaRDD<String> data = sc.textFile(path);
JavaRDD<Vector> parsedData = data.map(
new Function<String, Vector>() {
public Vector call(String s) {
String[] sarray = s.trim().split(" ");
double[] values = new double[sarray.length];
for (int i = 0; i < sarray.length; i++)
values[i] = Double.parseDouble(sarray[i]);
return Vectors.dense(values);
}
}
);
// Index documents with unique IDs
JavaPairRDD<Long, Vector> corpus = JavaPairRDD.fromJavaRDD(parsedData.zipWithIndex().map(
new Function<Tuple2<Vector, Long>, Tuple2<Long, Vector>>() {
public Tuple2<Long, Vector> call(Tuple2<Vector, Long> doc_id) {
return doc_id.swap();
}
}
));
corpus.cache();

// Cluster the documents into three topics using LDA
DistributedLDAModel ldaModel = new LDA().setK(3).run(corpus);

This comment has been minimized.

Copy link
@alwaysprep

alwaysprep Sep 12, 2015

I think, we need to cast it to a DistributedLDAModel.


// Output topics. Each is a distribution over words (matching word count vectors)
System.out.println("Learned topics (as distributions over vocab of " + ldaModel.vocabSize()
+ " words):");
Matrix topics = ldaModel.topicsMatrix();
for (int topic = 0; topic < 3; topic++) {
System.out.print("Topic " + topic + ":");
for (int word = 0; word < ldaModel.vocabSize(); word++) {
System.out.print(" " + topics.apply(word, topic));
}
System.out.println();
}
}
}
{% endhighlight %}
</div>

</div>


In order to run the above application, follow the instructions
provided in the [Self-Contained Applications](quick-start.html#self-contained-applications)
section of the Spark
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.examples.mllib;

import scala.Tuple2;

import org.apache.spark.api.java.*;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.mllib.clustering.DistributedLDAModel;
import org.apache.spark.mllib.clustering.LDA;
import org.apache.spark.mllib.linalg.Matrix;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.SparkConf;

public class JavaLDAExample {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("LDA Example");
JavaSparkContext sc = new JavaSparkContext(conf);

// Load and parse the data
String path = "data/mllib/sample_lda_data.txt";
JavaRDD<String> data = sc.textFile(path);
JavaRDD<Vector> parsedData = data.map(
new Function<String, Vector>() {
public Vector call(String s) {
String[] sarray = s.trim().split(" ");
double[] values = new double[sarray.length];
for (int i = 0; i < sarray.length; i++)
values[i] = Double.parseDouble(sarray[i]);
return Vectors.dense(values);
}
}
);
// Index documents with unique IDs
JavaPairRDD<Long, Vector> corpus = JavaPairRDD.fromJavaRDD(parsedData.zipWithIndex().map(
new Function<Tuple2<Vector, Long>, Tuple2<Long, Vector>>() {
public Tuple2<Long, Vector> call(Tuple2<Vector, Long> doc_id) {
return doc_id.swap();
}
}
));
corpus.cache();

// Cluster the documents into three topics using LDA
DistributedLDAModel ldaModel = new LDA().setK(3).run(corpus);

// Output topics. Each is a distribution over words (matching word count vectors)
System.out.println("Learned topics (as distributions over vocab of " + ldaModel.vocabSize()
+ " words):");
Matrix topics = ldaModel.topicsMatrix();
for (int topic = 0; topic < 3; topic++) {
System.out.print("Topic " + topic + ":");
for (int word = 0; word < ldaModel.vocabSize(); word++) {
System.out.print(" " + topics.apply(word, topic));
}
System.out.println();
}
}
}

0 comments on commit 855d12a

Please sign in to comment.