Skip to content

Commit

Permalink
[SPARK-5012][MLLib][PySpark]Python API for Gaussian Mixture Model
Browse files Browse the repository at this point in the history
Python API for the Gaussian Mixture Model clustering algorithm in MLLib.

Author: FlytxtRnD <meethu.mathew@flytxt.com>

Closes #4059 from FlytxtRnD/PythonGmmWrapper and squashes the following commits:

c973ab3 [FlytxtRnD] Merge branch 'PythonGmmWrapper', remote-tracking branch 'upstream/master' into PythonGmmWrapper
339b09c [FlytxtRnD] Added MultivariateGaussian namedtuple  and Arraybuffer in trainGaussianMixture
fa0a142 [FlytxtRnD] New line added
d5b36ab [FlytxtRnD] Changed argument names to lowercase
ac134f1 [FlytxtRnD] Merge branch 'PythonGmmWrapper' of https://github.com/FlytxtRnD/spark into PythonGmmWrapper
6671ea1 [FlytxtRnD] Added mllib/stat/distribution.py
3aee84b [FlytxtRnD] Fixed style issues
2e9f12a [FlytxtRnD] Added mllib/stat/distribution.py and fixed style issues
b22532c [FlytxtRnD] Merge branch 'PythonGmmWrapper', remote-tracking branch 'upstream/master' into PythonGmmWrapper
2e14d82 [FlytxtRnD] Incorporate MultivariateGaussian instances in GaussianMixtureModel
05767c7 [FlytxtRnD] Merge branch 'PythonGmmWrapper', remote-tracking branch 'upstream/master' into PythonGmmWrapper
3464d19 [FlytxtRnD] Merge branch 'PythonGmmWrapper', remote-tracking branch 'upstream/master' into PythonGmmWrapper
c1d4c71 [FlytxtRnD] Merge branch 'PythonGmmWrapper', remote-tracking branch 'origin/PythonGmmWrapper' into PythonGmmWrapper
426d130 [FlytxtRnD] Added random seed parameter
332bad1 [FlytxtRnD] Merge branch 'PythonGmmWrapper', remote-tracking branch 'upstream/master' into PythonGmmWrapper
f82750b [FlytxtRnD] Fixed style issues
5c83825 [FlytxtRnD] Split input file with space delimiter
fda60f3 [FlytxtRnD] Python API for Gaussian Mixture Model
  • Loading branch information
FlytxtRnD authored and mengxr committed Feb 3, 2015
1 parent c31c36c commit 50a1a87
Show file tree
Hide file tree
Showing 6 changed files with 267 additions and 6 deletions.
65 changes: 65 additions & 0 deletions examples/src/main/python/mllib/gaussian_mixture_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""
A Gaussian Mixture Model clustering program using MLlib.
"""
import sys
import random
import argparse
import numpy as np

from pyspark import SparkConf, SparkContext
from pyspark.mllib.clustering import GaussianMixture


def parseVector(line):
return np.array([float(x) for x in line.split(' ')])


if __name__ == "__main__":
"""
Parameters
----------
:param inputFile: Input file path which contains data points
:param k: Number of mixture components
:param convergenceTol: Convergence threshold. Default to 1e-3
:param maxIterations: Number of EM iterations to perform. Default to 100
:param seed: Random seed
"""

parser = argparse.ArgumentParser()
parser.add_argument('inputFile', help='Input File')
parser.add_argument('k', type=int, help='Number of clusters')
parser.add_argument('--convergenceTol', default=1e-3, type=float, help='convergence threshold')
parser.add_argument('--maxIterations', default=100, type=int, help='Number of iterations')
parser.add_argument('--seed', default=random.getrandbits(19),
type=long, help='Random seed')
args = parser.parse_args()

conf = SparkConf().setAppName("GMM")
sc = SparkContext(conf=conf)

lines = sc.textFile(args.inputFile)
data = lines.map(parseVector)
model = GaussianMixture.train(data, args.k, args.convergenceTol,
args.maxIterations, args.seed)
for i in range(args.k):
print ("weight = ", model.weights[i], "mu = ", model.gaussians[i].mu,
"sigma = ", model.gaussians[i].sigma.toArray())
print ("Cluster labels (first 100): ", model.predict(data).take(100))
sc.stop()
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ import java.nio.{ByteBuffer, ByteOrder}
import java.util.{ArrayList => JArrayList, List => JList, Map => JMap}

import scala.collection.JavaConverters._
import scala.collection.mutable.ArrayBuffer
import scala.language.existentials
import scala.reflect.ClassTag

Expand All @@ -40,6 +41,7 @@ import org.apache.spark.mllib.recommendation._
import org.apache.spark.mllib.regression._
import org.apache.spark.mllib.stat.{MultivariateStatisticalSummary, Statistics}
import org.apache.spark.mllib.stat.correlation.CorrelationNames
import org.apache.spark.mllib.stat.distribution.MultivariateGaussian
import org.apache.spark.mllib.stat.test.ChiSqTestResult
import org.apache.spark.mllib.tree.{GradientBoostedTrees, RandomForest, DecisionTree}
import org.apache.spark.mllib.tree.configuration.{BoostingStrategy, Algo, Strategy}
Expand Down Expand Up @@ -260,7 +262,7 @@ class PythonMLLibAPI extends Serializable {
}

/**
* Java stub for Python mllib KMeans.train()
* Java stub for Python mllib KMeans.run()
*/
def trainKMeansModel(
data: JavaRDD[Vector],
Expand All @@ -284,6 +286,58 @@ class PythonMLLibAPI extends Serializable {
}
}

/**
* Java stub for Python mllib GaussianMixture.run()
* Returns a list containing weights, mean and covariance of each mixture component.
*/
def trainGaussianMixture(
data: JavaRDD[Vector],
k: Int,
convergenceTol: Double,
maxIterations: Int,
seed: Long): JList[Object] = {
val gmmAlg = new GaussianMixture()
.setK(k)
.setConvergenceTol(convergenceTol)
.setMaxIterations(maxIterations)

if (seed != null) gmmAlg.setSeed(seed)

try {
val model = gmmAlg.run(data.rdd.persist(StorageLevel.MEMORY_AND_DISK))
var wt = ArrayBuffer.empty[Double]
var mu = ArrayBuffer.empty[Vector]
var sigma = ArrayBuffer.empty[Matrix]
for (i <- 0 until model.k) {
wt += model.weights(i)
mu += model.gaussians(i).mu
sigma += model.gaussians(i).sigma
}
List(wt.toArray, mu.toArray, sigma.toArray).map(_.asInstanceOf[Object]).asJava
} finally {
data.rdd.unpersist(blocking = false)
}
}

/**
* Java stub for Python mllib GaussianMixtureModel.predictSoft()
*/
def predictSoftGMM(
data: JavaRDD[Vector],
wt: Object,
mu: Array[Object],
si: Array[Object]): RDD[Array[Double]] = {

val weight = wt.asInstanceOf[Array[Double]]
val mean = mu.map(_.asInstanceOf[DenseVector])
val sigma = si.map(_.asInstanceOf[DenseMatrix])
val gaussians = Array.tabulate(weight.length){
i => new MultivariateGaussian(mean(i), sigma(i))
}
val model = new GaussianMixtureModel(weight, gaussians)
model.predictSoft(data)
}

/**
* A Wrapper of MatrixFactorizationModel to provide helpfer method for Python
*/
Expand Down
92 changes: 88 additions & 4 deletions python/pyspark/mllib/clustering.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,19 +15,22 @@
# limitations under the License.
#

from numpy import array

from pyspark import RDD
from pyspark import SparkContext
from pyspark.mllib.common import callMLlibFunc, callJavaFunc
from pyspark.mllib.linalg import SparseVector, _convert_to_vector
from pyspark.mllib.linalg import DenseVector, SparseVector, _convert_to_vector
from pyspark.mllib.stat.distribution import MultivariateGaussian

__all__ = ['KMeansModel', 'KMeans']
__all__ = ['KMeansModel', 'KMeans', 'GaussianMixtureModel', 'GaussianMixture']


class KMeansModel(object):

"""A clustering model derived from the k-means method.
>>> from numpy import array
>>> data = array([0.0,0.0, 1.0,1.0, 9.0,8.0, 8.0,9.0]).reshape(4,2)
>>> data = array([0.0,0.0, 1.0,1.0, 9.0,8.0, 8.0,9.0]).reshape(4, 2)
>>> model = KMeans.train(
... sc.parallelize(data), 2, maxIterations=10, runs=30, initializationMode="random")
>>> model.predict(array([0.0, 0.0])) == model.predict(array([1.0, 1.0]))
Expand Down Expand Up @@ -86,6 +89,87 @@ def train(cls, rdd, k, maxIterations=100, runs=1, initializationMode="k-means||"
return KMeansModel([c.toArray() for c in centers])


class GaussianMixtureModel(object):

"""A clustering model derived from the Gaussian Mixture Model method.
>>> clusterdata_1 = sc.parallelize(array([-0.1,-0.05,-0.01,-0.1,
... 0.9,0.8,0.75,0.935,
... -0.83,-0.68,-0.91,-0.76 ]).reshape(6, 2))
>>> model = GaussianMixture.train(clusterdata_1, 3, convergenceTol=0.0001,
... maxIterations=50, seed=10)
>>> labels = model.predict(clusterdata_1).collect()
>>> labels[0]==labels[1]
False
>>> labels[1]==labels[2]
True
>>> labels[4]==labels[5]
True
>>> clusterdata_2 = sc.parallelize(array([-5.1971, -2.5359, -3.8220,
... -5.2211, -5.0602, 4.7118,
... 6.8989, 3.4592, 4.6322,
... 5.7048, 4.6567, 5.5026,
... 4.5605, 5.2043, 6.2734]).reshape(5, 3))
>>> model = GaussianMixture.train(clusterdata_2, 2, convergenceTol=0.0001,
... maxIterations=150, seed=10)
>>> labels = model.predict(clusterdata_2).collect()
>>> labels[0]==labels[1]==labels[2]
True
>>> labels[3]==labels[4]
True
"""

def __init__(self, weights, gaussians):
self.weights = weights
self.gaussians = gaussians
self.k = len(self.weights)

def predict(self, x):
"""
Find the cluster to which the points in 'x' has maximum membership
in this model.
:param x: RDD of data points.
:return: cluster_labels. RDD of cluster labels.
"""
if isinstance(x, RDD):
cluster_labels = self.predictSoft(x).map(lambda z: z.index(max(z)))
return cluster_labels

def predictSoft(self, x):
"""
Find the membership of each point in 'x' to all mixture components.
:param x: RDD of data points.
:return: membership_matrix. RDD of array of double values.
"""
if isinstance(x, RDD):
means, sigmas = zip(*[(g.mu, g.sigma) for g in self.gaussians])
membership_matrix = callMLlibFunc("predictSoftGMM", x.map(_convert_to_vector),
self.weights, means, sigmas)
return membership_matrix


class GaussianMixture(object):
"""
Estimate model parameters with the expectation-maximization algorithm.
:param data: RDD of data points
:param k: Number of components
:param convergenceTol: Threshold value to check the convergence criteria. Defaults to 1e-3
:param maxIterations: Number of iterations. Default to 100
:param seed: Random Seed
"""
@classmethod
def train(cls, rdd, k, convergenceTol=1e-3, maxIterations=100, seed=None):
"""Train a Gaussian Mixture clustering model."""
weight, mu, sigma = callMLlibFunc("trainGaussianMixture",
rdd.map(_convert_to_vector), k,
convergenceTol, maxIterations, seed)
mvg_obj = [MultivariateGaussian(mu[i], sigma[i]) for i in range(k)]
return GaussianMixtureModel(weight, mvg_obj)


def _test():
import doctest
globs = globals().copy()
Expand Down
3 changes: 2 additions & 1 deletion python/pyspark/mllib/stat/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,5 +20,6 @@
"""

from pyspark.mllib.stat._statistics import *
from pyspark.mllib.stat.distribution import MultivariateGaussian

__all__ = ["Statistics", "MultivariateStatisticalSummary"]
__all__ = ["Statistics", "MultivariateStatisticalSummary", "MultivariateGaussian"]
31 changes: 31 additions & 0 deletions python/pyspark/mllib/stat/distribution.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from collections import namedtuple

__all__ = ['MultivariateGaussian']


class MultivariateGaussian(namedtuple('MultivariateGaussian', ['mu', 'sigma'])):

""" Represents a (mu, sigma) tuple
>>> m = MultivariateGaussian(Vectors.dense([11,12]),DenseMatrix(2, 2, (1.0, 3.0, 5.0, 2.0)))
>>> (m.mu, m.sigma.toArray())
(DenseVector([11.0, 12.0]), array([[ 1., 5.],[ 3., 2.]]))
>>> (m[0], m[1])
(DenseVector([11.0, 12.0]), array([[ 1., 5.],[ 3., 2.]]))
"""
26 changes: 26 additions & 0 deletions python/pyspark/mllib/tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -167,6 +167,32 @@ def test_kmeans_deterministic(self):
# TODO: Allow small numeric difference.
self.assertTrue(array_equal(c1, c2))

def test_gmm(self):
from pyspark.mllib.clustering import GaussianMixture
data = self.sc.parallelize([
[1, 2],
[8, 9],
[-4, -3],
[-6, -7],
])
clusters = GaussianMixture.train(data, 2, convergenceTol=0.001,
maxIterations=100, seed=56)
labels = clusters.predict(data).collect()
self.assertEquals(labels[0], labels[1])
self.assertEquals(labels[2], labels[3])

def test_gmm_deterministic(self):
from pyspark.mllib.clustering import GaussianMixture
x = range(0, 100, 10)
y = range(0, 100, 10)
data = self.sc.parallelize([[a, b] for a, b in zip(x, y)])
clusters1 = GaussianMixture.train(data, 5, convergenceTol=0.001,
maxIterations=100, seed=63)
clusters2 = GaussianMixture.train(data, 5, convergenceTol=0.001,
maxIterations=100, seed=63)
for c1, c2 in zip(clusters1.weights, clusters2.weights):
self.assertEquals(round(c1, 7), round(c2, 7))

def test_classification(self):
from pyspark.mllib.classification import LogisticRegressionWithSGD, SVMWithSGD, NaiveBayes
from pyspark.mllib.tree import DecisionTree, RandomForest, GradientBoostedTrees
Expand Down

0 comments on commit 50a1a87

Please sign in to comment.