Implementation of AlphaFold 3 in PyTorch Lightning + Hydra
You can chat with other researchers about this work here
Illustrated guide by Elana P. Simon
The original version of this repository with Fabric support is being maintained by Phil at this repository
A visualization of the molecules of life used in the repository can be seen and interacted with here
-
Phil for spearheading the development of the
Alphafold3
module and losses as well as theInput
classes! -
Joseph for contributing the Relative Positional Encoding and the Smooth LDDT Loss!
-
Felipe for contributing Weighted Rigid Align, Express Coordinates In Frame, Compute Alignment Error, and Centre Random Augmentation modules!
-
Heng for pointing out inconsistencies with the paper and pull requesting the solutions (e.g., finding an issue with the molecular atom indices for the distogram loss)
-
Wei Lu for catching a few erroneous hyperparameters
-
Milot for generating MSA and template inputs as well as optimizing the PDB dataset clustering script!
-
Andrei for working on the weighted PDB dataset sampling and for taking on the gradio frontend interface!
-
Jimin for submitting a small fix to an issue with the coordinates being passed into
WeightedRigidAlign
-
@xluo233 for contributing the confidence measures, clash penalty ranking, sample ranking logic, as well as the logic for computing the model selection score and unresolved RASA!
-
sj900 for integrating and testing the
WeightedPDBSampler
within thePDBDataset
and for adding initial support for MSA and template parsing! -
Fandi for discovering a few inconsistencies in the elucidated atom diffusion module with the supplementary
-
Paolo for proposing the
PDB neutral stable molecule
hypothesis! -
Dhuvi for fixing a bug related to metal ion molecule ID assignment for
Alphafold3Inputs
and for taking on the logic for translatingAlphafold3Inputs
toBiomolecules
for saving inference samples to mmCIF files! -
Tom (from the Discord channel) for identifying a discrepancy between this codebase's distogram and template unit vector computations and those of OpenFold (and Andrei for helping address the distogram issue)!
-
Kaihui for identifying a bug in how non-standard atoms were handled in polymer residues!
-
Patrick for jaxtyping, Florian for einx, and of course, Alex for einops
-
Soumith and the PyTorch organization for giving Phil the opportunity to open source this work
pip install alphafold3-pytorch-lightning-hydra
Install mamba
for dependency management (as a fast alternative to Anaconda):
wget "https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-$(uname)-$(uname -m).sh"
bash Mambaforge-$(uname)-$(uname -m).sh # accept all terms and install to the default location
rm Mambaforge-$(uname)-$(uname -m).sh # (optionally) remove installer after using it
source ~/.bashrc # alternatively, one can restart their shell session to achieve the same result
Install dependencies:
# Clone project
git clone https://github.com/amorehead/alphafold3-pytorch-lightning-hydra
cd alphafold3-pytorch-lightning-hydra
# Create Conda environment
mamba env create -f environment.yaml
conda activate alphafold3-pytorch # note: one still needs to use `conda` to (de)activate environments
# Install local project as package
pip3 install -e .
The included Dockerfile
contains the required dependencies to run the package and to train/inference using PyTorch with GPUs.
The default base image is pytorch/pytorch:2.3.0-cuda12.1-cudnn8-runtime
and installs the latest version of this package from the main
GitHub branch.
# Clone project
git clone https://github.com/amorehead/alphafold3-pytorch-lightning-hydra
cd alphafold3-pytorch-lightning-hydra
# Build Docker container
docker build -t alphafold3-pytorch-lightning-hydra .
Alternatively, use build arguments to rebuild the image with different software versions:
PYTORCH_TAG
: Changes the base image and thus builds with different PyTorch, CUDA, and/or cuDNN versions.GIT_TAG
: Changes the tag of this repo to clone and install the package.
For example:
## Use build argument to change versions
docker build --build-arg "PYTORCH_TAG=2.2.1-cuda12.1-cudnn8-devel" --build-arg "GIT_TAG=0.1.15" -t alphafold3-pytorch-lightning-hydra .
Then, run the container with GPUs and mount a local volume (for training) using the following command:
## Run Container
docker run -v .:/data --gpus all -it alphafold3-pytorch-lightning-hydra
NOTE: An AMD ROCm version of the Docker image can alternatively be built using ROCm_Dockerfile
.
import torch
from alphafold3_pytorch import Alphafold3
from alphafold3_pytorch.utils.model_utils import exclusive_cumsum
alphafold3 = Alphafold3(
dim_atom_inputs = 77,
dim_template_feats = 108
)
# Mock inputs
seq_len = 16
molecule_atom_indices = torch.randint(0, 2, (2, seq_len)).long()
molecule_atom_lens = torch.full((2, seq_len), 2).long()
atom_seq_len = molecule_atom_lens.sum(dim=-1).amax()
atom_offsets = exclusive_cumsum(molecule_atom_lens)
atom_inputs = torch.randn(2, atom_seq_len, 77)
atompair_inputs = torch.randn(2, atom_seq_len, atom_seq_len, 5)
additional_molecule_feats = torch.randint(0, 2, (2, seq_len, 5))
additional_token_feats = torch.randn(2, seq_len, 33)
is_molecule_types = torch.randint(0, 2, (2, seq_len, 5)).bool()
is_molecule_mod = torch.randint(0, 2, (2, seq_len, 4)).bool()
molecule_ids = torch.randint(0, 32, (2, seq_len))
template_feats = torch.randn(2, 2, seq_len, seq_len, 108)
template_mask = torch.ones((2, 2)).bool()
msa = torch.randn(2, 7, seq_len, 32)
msa_mask = torch.ones((2, 7)).bool()
additional_msa_feats = torch.randn(2, 7, seq_len, 2)
# Required for training, but omitted on inference
atom_pos = torch.randn(2, atom_seq_len, 3)
distogram_atom_indices = molecule_atom_lens - 1
distance_labels = torch.randint(0, 37, (2, seq_len, seq_len))
resolved_labels = torch.randint(0, 2, (2, atom_seq_len))
# Offset indices correctly
distogram_atom_indices += atom_offsets
molecule_atom_indices += atom_offsets
# Train
loss = alphafold3(
num_recycling_steps = 2,
atom_inputs = atom_inputs,
atompair_inputs = atompair_inputs,
molecule_ids = molecule_ids,
molecule_atom_lens = molecule_atom_lens,
additional_molecule_feats = additional_molecule_feats,
additional_msa_feats = additional_msa_feats,
additional_token_feats = additional_token_feats,
is_molecule_types = is_molecule_types,
is_molecule_mod = is_molecule_mod,
msa = msa,
msa_mask = msa_mask,
templates = template_feats,
template_mask = template_mask,
atom_pos = atom_pos,
distogram_atom_indices = distogram_atom_indices,
molecule_atom_indices = molecule_atom_indices,
distance_labels = distance_labels,
resolved_labels = resolved_labels
)
loss.backward()
# After much training ...
sampled_atom_pos = alphafold3(
num_recycling_steps = 4,
num_sample_steps = 16,
atom_inputs = atom_inputs,
atompair_inputs = atompair_inputs,
molecule_ids = molecule_ids,
molecule_atom_lens = molecule_atom_lens,
additional_molecule_feats = additional_molecule_feats,
additional_msa_feats = additional_msa_feats,
additional_token_feats = additional_token_feats,
is_molecule_types = is_molecule_types,
is_molecule_mod = is_molecule_mod,
msa = msa,
msa_mask = msa_mask,
templates = template_feats,
template_mask = template_mask
)
sampled_atom_pos.shape # (2, <atom_seqlen>, 3)
An example with molecule level input handling
import torch
from alphafold3_pytorch import Alphafold3, Alphafold3Input
contrived_protein = 'AG'
mock_atompos = [
torch.randn(5, 3), # alanine has 5 non-hydrogen atoms
torch.randn(4, 3) # glycine has 4 non-hydrogen atoms
]
train_alphafold3_input = Alphafold3Input(
proteins = [contrived_protein],
missing_atom_indices = [[1, 2], None],
atom_pos = mock_atompos
)
eval_alphafold3_input = Alphafold3Input(
proteins = [contrived_protein]
)
# training
alphafold3 = Alphafold3(
dim_atom_inputs = 3,
dim_atompair_inputs = 5,
atoms_per_window = 27,
dim_template_feats = 108,
num_molecule_mods = 0,
confidence_head_kwargs = dict(
pairformer_depth = 1
),
template_embedder_kwargs = dict(
pairformer_stack_depth = 1
),
msa_module_kwargs = dict(
depth = 1
),
pairformer_stack = dict(
depth = 2
),
diffusion_module_kwargs = dict(
atom_encoder_depth = 1,
token_transformer_depth = 1,
atom_decoder_depth = 1,
)
)
loss = alphafold3.forward_with_alphafold3_inputs([train_alphafold3_input])
loss.backward()
# sampling
alphafold3.eval()
sampled_atom_pos = alphafold3.forward_with_alphafold3_inputs(eval_alphafold3_input)
assert sampled_atom_pos.shape == (1, (5 + 4), 3)
To acquire the AlphaFold 3 PDB dataset, first download all first-assembly (and asymmetric unit) complexes in the Protein Data Bank (PDB), and then preprocess them with the script referenced below. The PDB can be downloaded from the RCSB: https://www.wwpdb.org/ftp/pdb-ftp-sites#rcsbpdb. The two Python scripts below (i.e., filter_pdb_{train,val,test}_mmcifs.py
and cluster_pdb_{train,val,test}_mmcifs.py
) assume you have downloaded the PDB in the mmCIF file format, placing its first-assembly and asymmetric unit mmCIF files at data/pdb_data/unfiltered_assembly_mmcifs/
and data/pdb_data/unfiltered_asym_mmcifs/
, respectively.
For reproducibility, we recommend downloading the PDB using AWS snapshots (e.g., 20240101
). To do so, refer to AWS's documentation to set up the AWS CLI locally. Alternatively, on the RCSB website, navigate down to "Download Protocols", and follow the download instructions depending on your location.
For example, one can use the following commands to download the PDB as two collections of mmCIF files:
# For `assembly1` complexes, use the PDB's `20240101` AWS snapshot:
aws s3 sync s3://pdbsnapshots/20240101/pub/pdb/data/assemblies/mmCIF/divided/ ./data/pdb_data/unfiltered_assembly_mmcifs
# Or as a fallback, use rsync:
rsync -rlpt -v -z --delete --port=33444 \
rsync.rcsb.org::ftp_data/assemblies/mmCIF/divided/ ./data/pdb_data/unfiltered_assembly_mmcifs/
# For asymmetric unit complexes, also use the PDB's `20240101` AWS snapshot:
aws s3 sync s3://pdbsnapshots/20240101/pub/pdb/data/structures/divided/mmCIF/ ./data/pdb_data/unfiltered_asym_mmcifs
# Or as a fallback, use rsync:
rsync -rlpt -v -z --delete --port=33444 \
rsync.rcsb.org::ftp_data/structures/divided/mmCIF/ ./data/pdb_data/unfiltered_asym_mmcifs/
WARNING: Downloading the PDB can take up to 700GB of space.
NOTE: The PDB hosts all available AWS snapshots here: https://pdbsnapshots.s3.us-west-2.amazonaws.com/index.html.
After downloading, you should have two directories formatted like this: https://files.rcsb.org/pub/pdb/data/assemblies/mmCIF/divided/ & https://files.rcsb.org/pub/pdb/data/structures/divided/mmCIF/
00/
01/
02/
..
zz/
For these directories, unzip all the files:
find ./data/pdb_data/unfiltered_assembly_mmcifs/ -type f -name "*.gz" -exec gzip -d {} \;
find ./data/pdb_data/unfiltered_asym_mmcifs/ -type f -name "*.gz" -exec gzip -d {} \;
Next run the commands
wget -P ./data/ccd_data/ https://files.wwpdb.org/pub/pdb/data/monomers/components.cif.gz
wget -P ./data/ccd_data/ https://files.wwpdb.org/pub/pdb/data/component-models/complete/chem_comp_model.cif.gz
from the project's root directory to download the latest version of the PDB's Chemical Component Dictionary (CCD) and its structural models. Extract each of these files using the following command:
find data/ccd_data/ -type f -name "*.gz" -exec gzip -d {} \;
Then run the following with pdb_assembly_dir
, pdb_asym_dir
, ccd_dir
, and mmcif_output_dir
replaced with the locations of your local copies of the first-assembly PDB, asymmetric unit PDB, CCD, and your desired dataset output directory (i.e., ./data/pdb_data/unfiltered_assembly_mmcifs/
, ./data/pdb_data/unfiltered_asym_mmcifs/
, ./data/ccd_data/
, and ./data/pdb_data/{train,val,test}_mmcifs/
).
python scripts/filter_pdb_train_mmcifs.py --mmcif_assembly_dir <pdb_assembly_dir> --mmcif_asym_dir <pdb_asym_dir> --ccd_dir <ccd_dir> --output_dir <mmcif_output_dir>
python scripts/filter_pdb_val_mmcifs.py --mmcif_assembly_dir <pdb_assembly_dir> --mmcif_asym_dir <pdb_asym_dir> --output_dir <mmcif_output_dir>
python scripts/filter_pdb_test_mmcifs.py --mmcif_assembly_dir <pdb_assembly_dir> --mmcif_asym_dir <pdb_asym_dir> --output_dir <mmcif_output_dir>
See the scripts for more options. Each first-assembly mmCIF that successfully passes
all processing steps will be written to mmcif_output_dir
within a subdirectory
named according to the mmCIF's second and third PDB ID characters (e.g. 5c
).
Next, run the following with mmcif_dir
and {train,val,test}_clustering_output_dir
replaced, respectively, with your local output directory created using the dataset filtering script above and with your desired clustering output directories (i.e., ./data/pdb_data/{train,val,test}_mmcifs/
and ./data/pdb_data/data_caches/{train,val,test}_clusterings/
):
python scripts/cluster_pdb_train_mmcifs.py --mmcif_dir <mmcif_dir> --output_dir <train_clustering_output_dir> --clustering_filtered_pdb_dataset
python scripts/cluster_pdb_val_mmcifs.py --mmcif_dir <mmcif_dir> --reference_clustering_dir <train_clustering_output_dir> --output_dir <val_clustering_output_dir> --clustering_filtered_pdb_dataset
python scripts/cluster_pdb_test_mmcifs.py --mmcif_dir <mmcif_dir> --reference_1_clustering_dir <train_clustering_output_dir> --reference_2_clustering_dir <val_clustering_output_dir> --output_dir <test_clustering_output_dir> --clustering_filtered_pdb_dataset
Note: The --clustering_filtered_pdb_dataset
flag is recommended when clustering the filtered PDB dataset as curated using the scripts above, as this flag will enable faster runtimes in this context (since filtering leaves each chain's residue IDs 1-based). However, this flag must not be provided when clustering other (i.e., non-PDB) datasets of mmCIF files. Otherwise, interface clustering may be performed incorrectly, as these datasets' mmCIF files may not use strict 1-based residue indexing for each chain.
Note: One can instead download preprocessed (i.e., filtered) mmCIF (train
/val
/test
) files (~25GB, comprising 148k complexes) and chain/interface clustering (train
/val
/test
) files (~3GB) for the PDB's 20240101
AWS snapshot via a shared OneDrive folder. Each of these tar.gz
archives should be decompressed within the data/pdb_data/
directory e.g., via tar -xzf data_caches.tar.gz -C data/pdb_data/
. One can also download and prepare PDB distillation data using as a reference the script scripts/distillation_data_download.sh
. Once downloaded, one can run scripts/reduce_uniprot_predictions_to_pdb.py
to filter this dataset to only examples associated with at least one PDB entry. Moreover, for convenience, a mapping of UniProt accession IDs to PDB IDs for training on PDB distillation data has already been downloaded and extracted as data/afdb_data/data_caches/uniprot_to_pdb_id_mapping.dat
.
Train model with default configuration
# Train on CPU
python alphafold3_pytorch/train.py trainer=cpu
# Train on GPU
python alphafold3_pytorch/train.py trainer=gpu
Train model with chosen experiment configuration from configs/experiment/
# e.g., Train an initial set of weights
python alphafold3_pytorch/train.py experiment=alphafold3_initial_training.yaml
You can override any parameter from command line like this
python alphafold3_pytorch/train.py trainer.max_steps=1e6 data.batch_size=128
Evaluate a trained set of weights on held-out test data
# e.g., Evaluate on GPU
python alphafold3_pytorch/eval.py trainer=gpu
At the project root, run
bash contributing.sh
Then, add your module to alphafold3_pytorch/models/components/alphafold3.py
, add your tests to tests/test_alphafold3.py
, and submit a pull request. You can run the tests locally with
pytest tests/
We use pip
and docker
to manage the project's underlying dependencies. Notably, to update the dependencies built by the project's Dockerfile
, first edit the contents of the dependencies
list in pyproject.toml
, and then rebuild the project's docker
image:
docker stop <container_id> # First stop any running `af3` container(s)
docker rm <container_id> # Then remove the container(s) - Caution: Make sure to push your local changes to GitHub before running this!
docker build -t af3 . # Rebuild the Docker image
docker run -v .:/data --gpus all -it af3 # Lastly, (re)start the Docker container from the updated image
If you want to update the project's pip
dependencies only, you can simply push to GitHub your changes to the pyproject.toml
file.
We use pre-commit
to automatically format the project's code. To set up pre-commit
(one time only) for automatic code linting and formatting upon each execution of git commit
:
pre-commit install
To manually reformat all files in the project as desired:
pre-commit run -a
Refer to pre-commit's documentation for more details.
@article{Abramson2024-fj,
title = "Accurate structure prediction of biomolecular interactions with
{AlphaFold} 3",
author = "Abramson, Josh and Adler, Jonas and Dunger, Jack and Evans,
Richard and Green, Tim and Pritzel, Alexander and Ronneberger,
Olaf and Willmore, Lindsay and Ballard, Andrew J and Bambrick,
Joshua and Bodenstein, Sebastian W and Evans, David A and Hung,
Chia-Chun and O'Neill, Michael and Reiman, David and
Tunyasuvunakool, Kathryn and Wu, Zachary and {\v Z}emgulyt{\.e},
Akvil{\.e} and Arvaniti, Eirini and Beattie, Charles and
Bertolli, Ottavia and Bridgland, Alex and Cherepanov, Alexey and
Congreve, Miles and Cowen-Rivers, Alexander I and Cowie, Andrew
and Figurnov, Michael and Fuchs, Fabian B and Gladman, Hannah and
Jain, Rishub and Khan, Yousuf A and Low, Caroline M R and Perlin,
Kuba and Potapenko, Anna and Savy, Pascal and Singh, Sukhdeep and
Stecula, Adrian and Thillaisundaram, Ashok and Tong, Catherine
and Yakneen, Sergei and Zhong, Ellen D and Zielinski, Michal and
{\v Z}{\'\i}dek, Augustin and Bapst, Victor and Kohli, Pushmeet
and Jaderberg, Max and Hassabis, Demis and Jumper, John M",
journal = "Nature",
month = "May",
year = 2024
}
@inproceedings{Darcet2023VisionTN,
title = {Vision Transformers Need Registers},
author = {Timoth'ee Darcet and Maxime Oquab and Julien Mairal and Piotr Bojanowski},
year = {2023},
url = {https://api.semanticscholar.org/CorpusID:263134283}
}
@article{Arora2024SimpleLA,
title = {Simple linear attention language models balance the recall-throughput tradeoff},
author = {Simran Arora and Sabri Eyuboglu and Michael Zhang and Aman Timalsina and Silas Alberti and Dylan Zinsley and James Zou and Atri Rudra and Christopher R'e},
journal = {ArXiv},
year = {2024},
volume = {abs/2402.18668},
url = {https://api.semanticscholar.org/CorpusID:268063190}
}
@article{Puny2021FrameAF,
title = {Frame Averaging for Invariant and Equivariant Network Design},
author = {Omri Puny and Matan Atzmon and Heli Ben-Hamu and Edward James Smith and Ishan Misra and Aditya Grover and Yaron Lipman},
journal = {ArXiv},
year = {2021},
volume = {abs/2110.03336},
url = {https://api.semanticscholar.org/CorpusID:238419638}
}
@article{Duval2023FAENetFA,
title = {FAENet: Frame Averaging Equivariant GNN for Materials Modeling},
author = {Alexandre Duval and Victor Schmidt and Alex Hernandez Garcia and Santiago Miret and Fragkiskos D. Malliaros and Yoshua Bengio and David Rolnick},
journal = {ArXiv},
year = {2023},
volume = {abs/2305.05577},
url = {https://api.semanticscholar.org/CorpusID:258564608}
}
@article{Wang2022DeepNetST,
title = {DeepNet: Scaling Transformers to 1, 000 Layers},
author = {Hongyu Wang and Shuming Ma and Li Dong and Shaohan Huang and Dongdong Zhang and Furu Wei},
journal = {ArXiv},
year = {2022},
volume = {abs/2203.00555},
url = {https://api.semanticscholar.org/CorpusID:247187905}
}
@inproceedings{Ainslie2023CoLT5FL,
title = {CoLT5: Faster Long-Range Transformers with Conditional Computation},
author = {Joshua Ainslie and Tao Lei and Michiel de Jong and Santiago Ontan'on and Siddhartha Brahma and Yury Zemlyanskiy and David Uthus and Mandy Guo and James Lee-Thorp and Yi Tay and Yun-Hsuan Sung and Sumit Sanghai},
year = {2023}
}
@article{Ash2019OnTD,
title = {On the Difficulty of Warm-Starting Neural Network Training},
author = {Jordan T. Ash and Ryan P. Adams},
journal = {ArXiv},
year = {2019},
volume = {abs/1910.08475},
url = {https://api.semanticscholar.org/CorpusID:204788802}
}
@ARTICLE{Heinzinger2023.07.23.550085,
author = {Michael Heinzinger and Konstantin Weissenow and Joaquin Gomez Sanchez and Adrian Henkel and Martin Steinegger and Burkhard Rost},
title = {ProstT5: Bilingual Language Model for Protein Sequence and Structure},
year = {2023},
doi = {10.1101/2023.07.23.550085},
journal = {bioRxiv}
}
@article {Lin2022.07.20.500902,
author = {Lin, Zeming and Akin, Halil and Rao, Roshan and Hie, Brian and Zhu, Zhongkai and Lu, Wenting and Santos Costa, Allan dos and Fazel-Zarandi, Maryam and Sercu, Tom and Candido, Sal and Rives, Alexander},
title = {Language models of protein sequences at the scale of evolution enable accurate structure prediction},
elocation-id = {2022.07.20.500902},
year = {2022},
doi = {10.1101/2022.07.20.500902},
publisher = {Cold Spring Harbor Laboratory},
URL = {https://www.biorxiv.org/content/early/2022/07/21/2022.07.20.500902},
eprint = {https://www.biorxiv.org/content/early/2022/07/21/2022.07.20.500902.full.pdf},
journal = {bioRxiv}
}