-
Notifications
You must be signed in to change notification settings - Fork 27
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
37 changed files
with
59,163 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
|
||
FBPN_NEW/.DS_Store | ||
weights/.DS_Store | ||
ucf101_interp_ours/.DS_Store | ||
.DS_Store |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
class UNet(nn.Module): | ||
def __init__(self, in_channels, out_classes): | ||
super(UNet, self).__init__() | ||
self.inc = inconv(in_channels, 64) | ||
self.down1 = down(64, 128) | ||
self.down2 = down(128, 256) | ||
self.down3 = down(256, 512) | ||
self.down4 = down(512, 1024) | ||
self.down5 = down(1024, 1024) | ||
self.up1 = up(2048, 512) | ||
self.up2 = up(1024, 256) | ||
self.up3 = up(512, 128) | ||
self.up4 = up(256, 64) | ||
self.up5 = up(128, 64) | ||
self.outc = outconv(64, out_classes) | ||
|
||
def forward(self, x): | ||
x1 = self.inc(x) | ||
x2 = self.down1(x1) | ||
x3 = self.down2(x2) | ||
x4 = self.down3(x3) | ||
x5 = self.down4(x4) | ||
x6 = self.down5(x5) | ||
x = self.up1(x6, x5) | ||
x = self.up2(x, x4) | ||
x = self.up3(x, x3) | ||
x = self.up4(x, x2) | ||
x = self.up5(x, x1) | ||
x = self.outc(x) | ||
return torch.sigmoid(x) | ||
|
||
class double_conv(nn.Module): | ||
'''(conv => BN => ReLU) * 2''' | ||
def __init__(self, in_ch, out_ch): | ||
super(double_conv, self).__init__() | ||
self.conv = nn.Sequential( | ||
nn.Conv2d(in_ch, out_ch, 3, padding=1), | ||
nn.BatchNorm2d(out_ch), | ||
nn.ReLU(inplace=True), | ||
nn.Conv2d(out_ch, out_ch, 3, padding=1), | ||
nn.BatchNorm2d(out_ch), | ||
nn.ReLU(inplace=True) | ||
) | ||
|
||
def forward(self, x): | ||
x = self.conv(x) | ||
return x | ||
|
||
|
||
class inconv(nn.Module): | ||
def __init__(self, in_ch, out_ch): | ||
super(inconv, self).__init__() | ||
self.conv = double_conv(in_ch, out_ch) | ||
|
||
def forward(self, x): | ||
x = self.conv(x) | ||
return x | ||
|
||
|
||
class down(nn.Module): | ||
def __init__(self, in_ch, out_ch): | ||
super(down, self).__init__() | ||
self.mpconv = nn.Sequential( | ||
nn.MaxPool2d(2), | ||
double_conv(in_ch, out_ch) | ||
) | ||
|
||
def forward(self, x): | ||
x = self.mpconv(x) | ||
return x | ||
|
||
|
||
class up(nn.Module): | ||
def __init__(self, in_ch, out_ch, bilinear=True): | ||
super(up, self).__init__() | ||
|
||
# would be a nice idea if the upsampling could be learned too, | ||
# but my machine do not have enough memory to handle all those weights | ||
if bilinear: | ||
self.up = nn.Upsample(scale_factor=2.0, mode='bilinear', align_corners=True) | ||
else: | ||
self.up = nn.ConvTranspose2d(in_ch//2, in_ch//2, 2, stride=2) | ||
|
||
self.conv = double_conv(in_ch, out_ch) | ||
|
||
def forward(self, x1, x2): | ||
x1 = self.up(x1) | ||
|
||
# input is CHW | ||
diffY = x2.size()[2] - x1.size()[2] | ||
diffX = x2.size()[3] - x1.size()[3] | ||
|
||
x1 = F.pad(x1, (diffX // 2, diffX - diffX//2, | ||
diffY // 2, diffY - diffY//2)) | ||
|
||
# for padding issues, see | ||
# https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a | ||
# https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd | ||
|
||
x = torch.cat([x2, x1], dim=1) | ||
x = self.conv(x) | ||
return x | ||
|
||
|
||
class outconv(nn.Module): | ||
def __init__(self, in_ch, out_ch): | ||
super(outconv, self).__init__() | ||
self.conv = nn.Conv2d(in_ch, out_ch, 1) | ||
|
||
def forward(self, x): | ||
x = self.conv(x) | ||
return x |
Oops, something went wrong.