Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[wip] adding SciTLDR dataset #117

Open
wants to merge 3 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 25 additions & 0 deletions catwalk/models/t5.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,6 +70,29 @@ def _predict_prompt(self, task: Task, instances: Sequence[Dict[str, Any]], batch
"rouge": ([prediction], [[target]])
}

def _predict_summarization(self, task: Task, instances: Sequence[Dict[str, Any]], batch_size: int = 32) -> Iterator[Dict[str, Any]]:
examples = MappedSequence(task.instance_conversions[InstanceFormat.HF_SUMMARIZATION], instances)

model = self.get_model().eval()
tokenizer = self.get_tokenizer()
tokenizer.model_max_length = model.config.n_positions

with torch.inference_mode():
with Tqdm.tqdm(examples, desc="Processing instances") as examples_tqdm:
for batch in more_itertools.chunked(examples_tqdm, batch_size):
model_input = tokenizer([f"summarize:{i.source}" for i in batch],
truncation="only_first",
padding="longest",
return_tensors="pt")

model_output = model.generate(**model_input, max_new_tokens=50)
model_output = tokenizer.batch_decode(model_output, clean_up_tokenization_spaces=True, skip_special_tokens=True)
for instance, prediction in zip(batch, model_output):
target = instance.target
yield {
"rouge": ([prediction], [target])
}

def predict( # type: ignore
self,
task: Task,
Expand All @@ -81,6 +104,8 @@ def predict( # type: ignore
return self._predict_prompt(task, instances, batch_size=batch_size)
elif task.has_instance_conversion(InstanceFormat.HF_QA):
return self._predict_qa(task, instances, batch_size=batch_size)
elif task.has_instance_conversion(InstanceFormat.HF_SUMMARIZATION):
return self._predict_summarization(task, instances, batch_size=batch_size)

raise UnsupportedTaskError(self, task)

Expand Down
4 changes: 4 additions & 0 deletions catwalk/task.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,9 @@
"squad_metrics": torchmetrics.SQuAD,
}

SUMMARIZATION_METRICS = {
'summarization_metrics': torchmetrics.text.ROUGEScore
}

try:
from functools import cache as memoize
Expand Down Expand Up @@ -59,6 +62,7 @@ class InstanceFormat(Enum):
HF_MC = 2
HF_QA = 8
HF_CLASSIFICATION = 10
HF_SUMMARIZATION = 11
ELEUTHER_DOC = 3
ELEUTHER_CONTEXT = 4
ELEUTHER_REQUESTS = 5
Expand Down
14 changes: 12 additions & 2 deletions catwalk/tasks/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,11 +2,12 @@

import datasets

from catwalk.task import InstanceFormat, ENTAILMENT_METRICS, QA_METRICS, Task, \
from catwalk.task import InstanceFormat, ENTAILMENT_METRICS, QA_METRICS, SUMMARIZATION_METRICS, Task, \
classification_metrics, BINARY_CLASSIFICATION_METRICS, mc_metrics, PERPLEXITY_METRICS
from catwalk.tasks.eleuther import EleutherTask, RaceEleutherTask, EleutherTaskWithRenamedSplits, \
EleutherClassificationTask, EleutherClassificationTaskWithRenamedSplits
from catwalk.tasks.huggingface import hfmc_conversion, HFDatasetsTask, hfqa_conversion, hfclassification_conversion
from catwalk.tasks.huggingface import hfmc_conversion, HFDatasetsTask, hfqa_conversion, \
hfclassification_conversion, hfsummarization_conversion
from catwalk.tasks.p3 import P3Task
from catwalk.tasks.raft import RaftTask
from catwalk.tasks.metaicl import MetaICLTask
Expand Down Expand Up @@ -449,6 +450,12 @@
"metaicl::numer_sense": MetaICLTask("numer_sense").add_metrics(classification_metrics(12)),
"metaicl::race-high": MetaICLTask("race-high").add_metrics(mc_metrics(4)),
"metaicl::commonsense_qa": MetaICLTask("commonsense_qa").add_metrics(mc_metrics(5)),

# Summarization
"scitldr": HFDatasetsTask("scitldr").add_instance_conversion(
InstanceFormat.HF_SUMMARIZATION,
hfsummarization_conversion()
).add_metrics(SUMMARIZATION_METRICS),
}

for config in datasets.get_dataset_config_names("bigscience/P3"):
Expand Down Expand Up @@ -575,6 +582,9 @@
"metaicl::tweet_eval-hate",
"metaicl::tweet_eval-stance_atheism",
"metaicl::tweet_eval-stance_feminist"
},
"s2": {
"scitldr"
}
}

Expand Down
28 changes: 28 additions & 0 deletions catwalk/tasks/huggingface.py
Original file line number Diff line number Diff line change
Expand Up @@ -222,3 +222,31 @@ def hfclassification_conversion(
) -> InstanceConversion:
# We're doing this in this stupid way because this makes the conversion function picklable.
return functools.partial(hfclassification_convert, **kwargs)



@dataclass
class HFSummarizationInstance:
id: Optional[str]
source: str
target: str


def hfsummarization_convert(
instance: Dict[str, Any],
*,
source_field: str = "source",
target_field: str = "target",
id_field: Optional[str] = None,
) -> HFSummarizationInstance:
return HFSummarizationInstance(
id=str(get_from_dict(instance, id_field)) if id_field else None,
source=str(get_from_dict(instance, source_field)),
target=str(get_from_dict(instance, target_field)))


def hfsummarization_conversion(
**kwargs,
) -> InstanceConversion:
# We're doing this in this stupid way because this makes the conversion function picklable.
return functools.partial(hfsummarization_convert, **kwargs)