Skip to content

Clustering techniques using Genetic Algorithms and Particle Swarm Optimization

Notifications You must be signed in to change notification settings

aljarrahcs/clustering

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

clustering

Clustering techniques using Genetic Algorithms and Particle Swarm Optimization

genetic algorithm

A genetic algorithm is based on Darwin's ideas of evolution. Basically, it takes a population of n individuals, initializes them as possible solutions to a problem, and through crossovers, mutations, and sometimes reproductions, evolves the population until some condition is satisfied.

In this approach, the algorithm aims to discover coordinates to some clusters. It assumes prior knowledge of the problem, i.e., the number of clusters. The population will be of n individuals, aimed to find the coordinates, with some probability of crossover and mutation (we recommend 0.85 and 0.01) until some given number of iterations. The data will be provided through an input file.

execution of genetic algorithm

$ python Genetic.py n_individuals n_clusters p_crossover p_mutation iterations input_file

particle swarm optimization

PSO is a search algorithm that is based on birds behavior. A particle will be part of a population, and using its best position so far (cognitive factor), the best position in its neighbourhood (social factor), and its 'disposition to move' (inertia), it will move on the solution space looking for the place of minimum error.

The implementation of the algorithm uses a maximum and a minimum value for inertia (we suggest from 0.9 and 0.5), and cognitive and social factors are suggested to be 1.50 each. The input file will hold the data.

execution of particle swarm optimization

$ python PSO.py n_particles n_clusters inertia_max inertia_min fcognitive fsocial iterations input_file

About

Clustering techniques using Genetic Algorithms and Particle Swarm Optimization

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages