Skip to content

Commit

Permalink
Implement Gaussian Elimination in C++
Browse files Browse the repository at this point in the history
  • Loading branch information
mika314 committed Jul 21, 2018
1 parent f76495a commit 8394ead
Show file tree
Hide file tree
Showing 2 changed files with 141 additions and 0 deletions.
133 changes: 133 additions & 0 deletions contents/gaussian_elimination/code/c++/gaussian_elimination.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
#include <algorithm>
#include <cassert>
#include <cmath>
#include <iostream>
#include <vector>

void gaussian_elimination(std::vector<double>& a, int cols) {
assert(a.size() % cols == 0);
int rows = a.size() / cols;

int row = 0;

// Main loop going through all columns
for (int col = 0; col < cols - 1; ++col) {
// Step 1: finding the maximum element for each column
int max_index = [&]() {
int res = row;
int max_element = a[col + row * cols];
for (int r = row + 1; r < rows; ++r)
if (max_element < std::abs(a[col + r * cols])) {
max_element = std::abs(a[col + r * cols]);
res = r;
}
return res;
}();

// Check to make sure matrix is good!
if (a[col + max_index * cols] == 0) {
std::cout << "matrix is singular!\n";
continue;
}

// Step 2: swap row with highest value for that column to the top
for (int c = 0; c < cols; ++c)
std::swap(a[c + row * cols], a[c + max_index * cols]);

// Loop for all remaining rows
for (int i = row + 1; i < rows; ++i) {

// Step 3: finding fraction
auto fraction = a[col + i * cols] / a[col + row * cols];

// loop through all columns for that row
for (int j = col + 1; j < cols; ++j) {

// Step 4: re-evaluate each element
a[j + i * cols] -= a[j + row * cols] * fraction;
}

// Step 5: Set lower elements to 0
a[col + i * cols] = 0;
}
++row;
}
}

std::vector<double> back_substitution(const std::vector<double>& a, int cols) {
assert(a.size() % cols == 0);
int rows = a.size() / cols;

// Creating the solution Vector
std::vector<double> soln(rows);

// initialize the final element
soln[rows - 1] =
a[cols - 1 + (rows - 1) * cols] / a[cols - 1 - 1 + (rows - 1) * cols];

for (int i = rows - 1; i >= 0; --i) {
auto sum = 0.0;
for (int j = cols - 2; j > i; --j) {
sum += soln[j] * a[j + i * cols];
}

soln[i] = (a[cols - 1 + i * cols] - sum) / a[i + i * cols];
}

return soln;
}

void gauss_jordan_elimination(std::vector<double>& a, int cols) {
assert(a.size() % cols == 0);
// After this, we know what row to start on (r-1)
// to go back through the matrix
int row = 0;
for (int col = 0; col < cols - 1; ++col) {
if (a[col + row * cols] != 0) {

// divide row by pivot and leaving pivot as 1
for (int i = cols - 1; i >= static_cast<int>(col); --i)
a[i + row * cols] /= a[col + row * cols];

// subtract value from above row and set values above pivot to 0
for (int i = 0; i < static_cast<int>(row - 1); ++i)
for (int j = cols - 1; j >= static_cast<int>(col); --j)
a[j + i * cols] -= a[col + i * cols] * a[j + row * cols];
++row;
}
}
}

void print_matrix(const std::vector<double>& a, int cols) {
assert(a.size() % cols == 0);
int rows = a.size() / cols;
for (int i = 0; i < rows; ++i) {
std::cout << "[";
for (int j = 0; j < cols; ++j) {
std::cout << a[j + i * cols] << " ";
}
std::cout << "]\n";
}
}

int main() {
std::vector<double> a = {2, 3, 4, 6, 1, 2, 3, 4, 3, -4, 0, 10};
const int cols = 4;
assert(a.size() % cols == 0);

gaussian_elimination(a, cols);
print_matrix(a, cols);

auto soln = back_substitution(a, 4);

for (auto element : soln)
std::cout << element << std::endl;

gauss_jordan_elimination(a, cols);
print_matrix(a, cols);

soln = back_substitution(a, 4);

for (auto element : soln)
std::cout << element << std::endl;
}
8 changes: 8 additions & 0 deletions contents/gaussian_elimination/gaussian_elimination.md
Original file line number Diff line number Diff line change
Expand Up @@ -356,6 +356,8 @@ In code, this looks like:
[import:1-45, lang:"julia"](code/julia/gaussian_elimination.jl)
{% sample lang="c" %}
[import:13-44, lang:"c_cpp"](code/c/gaussian_elimination.c)
{% sample lang="cpp" %}
[import:6-54, lang:"c_cpp"](code/c++/gaussian_elimination.cpp)
{% sample lang="rs" %}
[import:41-78, lang:"rust"](code/rust/gaussian_elimination.rs)
{% endmethod %}
Expand Down Expand Up @@ -387,6 +389,8 @@ Here it is in code:
{% sample lang="c" %}
This code does not exist yet in C, so here's Julia code (sorry for the inconvenience)
[import:70-96, lang:"julia"](code/julia/gaussian_elimination.jl)
{% sample lang="cpp" %}
[import:79-98, lang:"c_cpp"](code/c++/gaussian_elimination.cpp)
{% sample lang="rs" %}
This code does not exist yet in rust, so here's Julia code (sorry for the inconvenience)
[import:70-96, lang:"julia"](code/julia/gaussian_elimination.jl)
Expand Down Expand Up @@ -416,6 +420,8 @@ In code, this involves keeping a rolling sum of all the values we substitute in
[import:47-67, lang:"julia"](code/julia/gaussian_elimination.jl)
{% sample lang="c" %}
[import:46-58, lang:"c_cpp"](code/c/gaussian_elimination.c)
{% sample lang="cpp" %}
[import:56-77, lang:"c_cpp"](code/c++/gaussian_elimination.cpp)
{% sample lang="rs" %}
[import:79-94, lang:"rust"](code/rust/gaussian_elimination.rs)
{% endmethod %}
Expand All @@ -436,6 +442,8 @@ As for what's next... Well, we are in for a treat! The above algorithm clearly h
[import, lang:"julia"](code/julia/gaussian_elimination.jl)
{% sample lang="c" %}
[import, lang:"c_cpp"](code/c/gaussian_elimination.c)
{% sample lang="cpp" %}
[import, lang:"c_cpp"](code/c++/gaussian_elimination.cpp)
{% sample lang="rs" %}
[import, lang:"rust"](code/rust/gaussian_elimination.rs)
{% endmethod %}
Expand Down

0 comments on commit 8394ead

Please sign in to comment.