-
-
Notifications
You must be signed in to change notification settings - Fork 357
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implement Gaussian Elimination in C++
- Loading branch information
Showing
2 changed files
with
141 additions
and
0 deletions.
There are no files selected for viewing
133 changes: 133 additions & 0 deletions
133
contents/gaussian_elimination/code/c++/gaussian_elimination.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
#include <algorithm> | ||
#include <cassert> | ||
#include <cmath> | ||
#include <iostream> | ||
#include <vector> | ||
|
||
void gaussian_elimination(std::vector<double>& a, int cols) { | ||
assert(a.size() % cols == 0); | ||
int rows = a.size() / cols; | ||
|
||
int row = 0; | ||
|
||
// Main loop going through all columns | ||
for (int col = 0; col < cols - 1; ++col) { | ||
// Step 1: finding the maximum element for each column | ||
int max_index = [&]() { | ||
int res = row; | ||
int max_element = a[col + row * cols]; | ||
for (int r = row + 1; r < rows; ++r) | ||
if (max_element < std::abs(a[col + r * cols])) { | ||
max_element = std::abs(a[col + r * cols]); | ||
res = r; | ||
} | ||
return res; | ||
}(); | ||
|
||
// Check to make sure matrix is good! | ||
if (a[col + max_index * cols] == 0) { | ||
std::cout << "matrix is singular!\n"; | ||
continue; | ||
} | ||
|
||
// Step 2: swap row with highest value for that column to the top | ||
for (int c = 0; c < cols; ++c) | ||
std::swap(a[c + row * cols], a[c + max_index * cols]); | ||
|
||
// Loop for all remaining rows | ||
for (int i = row + 1; i < rows; ++i) { | ||
|
||
// Step 3: finding fraction | ||
auto fraction = a[col + i * cols] / a[col + row * cols]; | ||
|
||
// loop through all columns for that row | ||
for (int j = col + 1; j < cols; ++j) { | ||
|
||
// Step 4: re-evaluate each element | ||
a[j + i * cols] -= a[j + row * cols] * fraction; | ||
} | ||
|
||
// Step 5: Set lower elements to 0 | ||
a[col + i * cols] = 0; | ||
} | ||
++row; | ||
} | ||
} | ||
|
||
std::vector<double> back_substitution(const std::vector<double>& a, int cols) { | ||
assert(a.size() % cols == 0); | ||
int rows = a.size() / cols; | ||
|
||
// Creating the solution Vector | ||
std::vector<double> soln(rows); | ||
|
||
// initialize the final element | ||
soln[rows - 1] = | ||
a[cols - 1 + (rows - 1) * cols] / a[cols - 1 - 1 + (rows - 1) * cols]; | ||
|
||
for (int i = rows - 1; i >= 0; --i) { | ||
auto sum = 0.0; | ||
for (int j = cols - 2; j > i; --j) { | ||
sum += soln[j] * a[j + i * cols]; | ||
} | ||
|
||
soln[i] = (a[cols - 1 + i * cols] - sum) / a[i + i * cols]; | ||
} | ||
|
||
return soln; | ||
} | ||
|
||
void gauss_jordan_elimination(std::vector<double>& a, int cols) { | ||
assert(a.size() % cols == 0); | ||
// After this, we know what row to start on (r-1) | ||
// to go back through the matrix | ||
int row = 0; | ||
for (int col = 0; col < cols - 1; ++col) { | ||
if (a[col + row * cols] != 0) { | ||
|
||
// divide row by pivot and leaving pivot as 1 | ||
for (int i = cols - 1; i >= static_cast<int>(col); --i) | ||
a[i + row * cols] /= a[col + row * cols]; | ||
|
||
// subtract value from above row and set values above pivot to 0 | ||
for (int i = 0; i < static_cast<int>(row - 1); ++i) | ||
for (int j = cols - 1; j >= static_cast<int>(col); --j) | ||
a[j + i * cols] -= a[col + i * cols] * a[j + row * cols]; | ||
++row; | ||
} | ||
} | ||
} | ||
|
||
void print_matrix(const std::vector<double>& a, int cols) { | ||
assert(a.size() % cols == 0); | ||
int rows = a.size() / cols; | ||
for (int i = 0; i < rows; ++i) { | ||
std::cout << "["; | ||
for (int j = 0; j < cols; ++j) { | ||
std::cout << a[j + i * cols] << " "; | ||
} | ||
std::cout << "]\n"; | ||
} | ||
} | ||
|
||
int main() { | ||
std::vector<double> a = {2, 3, 4, 6, 1, 2, 3, 4, 3, -4, 0, 10}; | ||
const int cols = 4; | ||
assert(a.size() % cols == 0); | ||
|
||
gaussian_elimination(a, cols); | ||
print_matrix(a, cols); | ||
|
||
auto soln = back_substitution(a, 4); | ||
|
||
for (auto element : soln) | ||
std::cout << element << std::endl; | ||
|
||
gauss_jordan_elimination(a, cols); | ||
print_matrix(a, cols); | ||
|
||
soln = back_substitution(a, 4); | ||
|
||
for (auto element : soln) | ||
std::cout << element << std::endl; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters