-
Notifications
You must be signed in to change notification settings - Fork 164
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
NEON32: dec: factor decoding loop into inline function
- Loading branch information
Showing
2 changed files
with
83 additions
and
83 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,107 +1,106 @@ | ||
// If we have NEON support, pick off 64 bytes at a time for as long as we can. | ||
// Unlike the SSE codecs, we don't write trailing zero bytes to output, so we | ||
// don't need to check if we have enough remaining input to cover them: | ||
while (srclen >= 64) | ||
static inline int | ||
is_nonzero (const uint8x16_t v) | ||
{ | ||
uint8x16x3_t dec; | ||
uint64_t u64; | ||
const uint64x2_t v64 = vreinterpretq_u64_u8(v); | ||
const uint32x2_t v32 = vqmovn_u64(v64); | ||
|
||
// Load 64 bytes and deinterleave: | ||
uint8x16x4_t str = vld4q_u8((uint8_t *)c); | ||
vst1_u64(&u64, vreinterpret_u64_u32(v32)); | ||
return u64 != 0; | ||
} | ||
|
||
static inline uint8x16_t | ||
delta_lookup (const uint8x16_t v) | ||
{ | ||
const uint8x8_t lut = { | ||
0, 16, 19, 4, (uint8_t) -65, (uint8_t) -65, (uint8_t) -71, (uint8_t) -71, | ||
}; | ||
|
||
// See ssse3/dec_loop.c for an explanation of how the code works. | ||
return vcombine_u8( | ||
vtbl1_u8(lut, vget_low_u8(v)), | ||
vtbl1_u8(lut, vget_high_u8(v))); | ||
} | ||
|
||
static inline uint8x16_t | ||
dec_loop_neon32_lane (uint8x16_t *lane) | ||
{ | ||
// See the SSSE3 decoder for an explanation of the algorithm. | ||
const uint8x16_t lut_lo = { | ||
0x15, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, | ||
0x11, 0x11, 0x13, 0x1A, 0x1B, 0x1B, 0x1B, 0x1A | ||
}; | ||
|
||
const uint8x16_t lut_hi = { | ||
0x10, 0x10, 0x01, 0x02, 0x04, 0x08, 0x04, 0x08, | ||
0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10 | ||
}; | ||
|
||
const uint8x16_t lut_roll = { | ||
0, 16, 19, 4, (uint8_t)-65, (uint8_t)-65, (uint8_t)-71, (uint8_t)-71, | ||
0, 0, 0, 0, 0, 0, 0, 0 | ||
}; | ||
|
||
const uint8x16_t mask_0F = vdupq_n_u8(0x0F); | ||
const uint8x16_t mask_2F = vdupq_n_u8(0x2F); | ||
|
||
uint8x16_t classified; | ||
const uint8x16_t hi_nibbles = vshrq_n_u8(*lane, 4); | ||
const uint8x16_t lo_nibbles = vandq_u8(*lane, mask_0F); | ||
const uint8x16_t eq_2F = vceqq_u8(*lane, mask_2F); | ||
|
||
{ | ||
const uint8x16_t hi_nibbles = vshrq_n_u8(str.val[0], 4); | ||
const uint8x16_t lo_nibbles = vandq_u8(str.val[0], mask_0F); | ||
const uint8x16_t eq_2F = vceqq_u8(str.val[0], mask_2F); | ||
const uint8x16_t hi = vqtbl1q_u8(lut_hi, hi_nibbles); | ||
const uint8x16_t lo = vqtbl1q_u8(lut_lo, lo_nibbles); | ||
|
||
const uint8x16_t hi = vqtbl1q_u8(lut_hi, hi_nibbles); | ||
const uint8x16_t lo = vqtbl1q_u8(lut_lo, lo_nibbles); | ||
// Now simply add the delta values to the input: | ||
*lane = vaddq_u8(*lane, delta_lookup(vaddq_u8(eq_2F, hi_nibbles))); | ||
|
||
const uint8x16_t delta = vqtbl1q_u8(lut_roll, vaddq_u8(eq_2F, hi_nibbles)); | ||
classified = vandq_u8(lo, hi); | ||
// Now simply add the delta values to the input: | ||
str.val[0] = vaddq_u8(str.val[0], delta); | ||
} | ||
{ | ||
const uint8x16_t hi_nibbles = vshrq_n_u8(str.val[1], 4); | ||
const uint8x16_t lo_nibbles = vandq_u8(str.val[1], mask_0F); | ||
const uint8x16_t eq_2F = vceqq_u8(str.val[1], mask_2F); | ||
|
||
const uint8x16_t hi = vqtbl1q_u8(lut_hi, hi_nibbles); | ||
const uint8x16_t lo = vqtbl1q_u8(lut_lo, lo_nibbles); | ||
|
||
const uint8x16_t delta = vqtbl1q_u8(lut_roll, vaddq_u8(eq_2F, hi_nibbles)); | ||
classified = vorrq_u8(classified, vandq_u8(lo, hi)); | ||
// Now simply add the delta values to the input: | ||
str.val[1] = vaddq_u8(str.val[1], delta); | ||
} | ||
{ | ||
const uint8x16_t hi_nibbles = vshrq_n_u8(str.val[2], 4); | ||
const uint8x16_t lo_nibbles = vandq_u8(str.val[2], mask_0F); | ||
const uint8x16_t eq_2F = vceqq_u8(str.val[2], mask_2F); | ||
|
||
const uint8x16_t hi = vqtbl1q_u8(lut_hi, hi_nibbles); | ||
const uint8x16_t lo = vqtbl1q_u8(lut_lo, lo_nibbles); | ||
|
||
const uint8x16_t delta = vqtbl1q_u8(lut_roll, vaddq_u8(eq_2F, hi_nibbles)); | ||
classified = vorrq_u8(classified, vandq_u8(lo, hi)); | ||
// Now simply add the delta values to the input: | ||
str.val[2] = vaddq_u8(str.val[2], delta); | ||
} | ||
{ | ||
const uint8x16_t hi_nibbles = vshrq_n_u8(str.val[3], 4); | ||
const uint8x16_t lo_nibbles = vandq_u8(str.val[3], mask_0F); | ||
const uint8x16_t eq_2F = vceqq_u8(str.val[3], mask_2F); | ||
|
||
const uint8x16_t hi = vqtbl1q_u8(lut_hi, hi_nibbles); | ||
const uint8x16_t lo = vqtbl1q_u8(lut_lo, lo_nibbles); | ||
|
||
const uint8x16_t delta = vqtbl1q_u8(lut_roll, vaddq_u8(eq_2F, hi_nibbles)); | ||
classified = vorrq_u8(classified, vandq_u8(lo, hi)); | ||
// Now simply add the delta values to the input: | ||
str.val[3] = vaddq_u8(str.val[3], delta); | ||
} | ||
// Return the validity mask: | ||
return vandq_u8(lo, hi); | ||
} | ||
|
||
// Check for invalid input: if any of the delta values are zero, | ||
// fall back on bytewise code to do error checking and reporting: | ||
// Extract both 32-bit halves; check that all bits are zero: | ||
if (vgetq_lane_u32((uint32x4_t)classified, 0) != 0 | ||
|| vgetq_lane_u32((uint32x4_t)classified, 1) != 0 | ||
|| vgetq_lane_u32((uint32x4_t)classified, 2) != 0 | ||
|| vgetq_lane_u32((uint32x4_t)classified, 3) != 0) { | ||
break; | ||
static inline void | ||
dec_loop_neon32 (const uint8_t **s, size_t *slen, uint8_t **o, size_t *olen) | ||
{ | ||
if (*slen < 64) { | ||
return; | ||
} | ||
|
||
// Compress four bytes into three: | ||
dec.val[0] = vorrq_u8(vshlq_n_u8(str.val[0], 2), vshrq_n_u8(str.val[1], 4)); | ||
dec.val[1] = vorrq_u8(vshlq_n_u8(str.val[1], 4), vshrq_n_u8(str.val[2], 2)); | ||
dec.val[2] = vorrq_u8(vshlq_n_u8(str.val[2], 6), str.val[3]); | ||
// Process blocks of 64 bytes per round. Unlike the SSE codecs, no | ||
// extra trailing zero bytes are written, so it is not necessary to | ||
// reserve extra input bytes: | ||
size_t rounds = *slen / 64; | ||
|
||
*slen -= rounds * 64; // 64 bytes consumed per round | ||
*olen += rounds * 48; // 48 bytes produced per round | ||
|
||
do { | ||
uint8x16x3_t dec; | ||
|
||
// Load 64 bytes and deinterleave: | ||
uint8x16x4_t str = vld4q_u8(*s); | ||
|
||
// Decode each lane, collect a mask of invalid inputs: | ||
const uint8x16_t classified | ||
= dec_loop_neon32_lane(&str.val[0]) | ||
| dec_loop_neon32_lane(&str.val[1]) | ||
| dec_loop_neon32_lane(&str.val[2]) | ||
| dec_loop_neon32_lane(&str.val[3]); | ||
|
||
// Check for invalid input: if any of the delta values are | ||
// zero, fall back on bytewise code to do error checking and | ||
// reporting: | ||
if (is_nonzero(classified)) { | ||
break; | ||
} | ||
|
||
// Compress four bytes into three: | ||
dec.val[0] = vorrq_u8(vshlq_n_u8(str.val[0], 2), vshrq_n_u8(str.val[1], 4)); | ||
dec.val[1] = vorrq_u8(vshlq_n_u8(str.val[1], 4), vshrq_n_u8(str.val[2], 2)); | ||
dec.val[2] = vorrq_u8(vshlq_n_u8(str.val[2], 6), str.val[3]); | ||
|
||
// Interleave and store decoded result: | ||
vst3q_u8(*o, dec); | ||
|
||
*s += 64; | ||
*o += 48; | ||
|
||
// Interleave and store decoded result: | ||
vst3q_u8((uint8_t *)o, dec); | ||
} while (--rounds > 0); | ||
|
||
c += 64; | ||
o += 48; | ||
outl += 48; | ||
srclen -= 64; | ||
// Adjust for any rounds that were skipped: | ||
*slen += rounds * 64; | ||
*olen -= rounds * 48; | ||
} |