-
Notifications
You must be signed in to change notification settings - Fork 42
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #150 from photonshi/malicious_attack_inversion
Malicious attack inversion
- Loading branch information
Showing
7 changed files
with
324 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,209 @@ | ||
"""Repeatable code parts concerning data loading.""" | ||
|
||
|
||
import torch | ||
import torchvision | ||
import torchvision.transforms as transforms | ||
|
||
import os | ||
|
||
from ..consts import * | ||
|
||
from .data import _build_bsds_sr, _build_bsds_dn | ||
from .loss import Classification, PSNR | ||
|
||
|
||
def construct_dataloaders(dataset, defs, data_path='~/data', shuffle=True, normalize=True): | ||
"""Return a dataloader with given dataset and augmentation, normalize data?.""" | ||
path = os.path.expanduser(data_path) | ||
|
||
if dataset == 'CIFAR10': | ||
trainset, validset = _build_cifar10(path, defs.augmentations, normalize) | ||
loss_fn = Classification() | ||
elif dataset == 'CIFAR100': | ||
trainset, validset = _build_cifar100(path, defs.augmentations, normalize) | ||
loss_fn = Classification() | ||
elif dataset == 'MNIST': | ||
trainset, validset = _build_mnist(path, defs.augmentations, normalize) | ||
loss_fn = Classification() | ||
elif dataset == 'MNIST_GRAY': | ||
trainset, validset = _build_mnist_gray(path, defs.augmentations, normalize) | ||
loss_fn = Classification() | ||
elif dataset == 'ImageNet': | ||
trainset, validset = _build_imagenet(path, defs.augmentations, normalize) | ||
loss_fn = Classification() | ||
elif dataset == 'BSDS-SR': | ||
trainset, validset = _build_bsds_sr(path, defs.augmentations, normalize, upscale_factor=3, RGB=True) | ||
loss_fn = PSNR() | ||
elif dataset == 'BSDS-DN': | ||
trainset, validset = _build_bsds_dn(path, defs.augmentations, normalize, noise_level=25 / 255, RGB=False) | ||
loss_fn = PSNR() | ||
elif dataset == 'BSDS-RGB': | ||
trainset, validset = _build_bsds_dn(path, defs.augmentations, normalize, noise_level=25 / 255, RGB=True) | ||
loss_fn = PSNR() | ||
|
||
if MULTITHREAD_DATAPROCESSING: | ||
num_workers = min(torch.get_num_threads(), MULTITHREAD_DATAPROCESSING) if torch.get_num_threads() > 1 else 0 | ||
else: | ||
num_workers = 0 | ||
|
||
trainloader = torch.utils.data.DataLoader(trainset, batch_size=min(defs.batch_size, len(trainset)), | ||
shuffle=shuffle, drop_last=True, num_workers=num_workers, pin_memory=PIN_MEMORY) | ||
validloader = torch.utils.data.DataLoader(validset, batch_size=min(defs.batch_size, len(trainset)), | ||
shuffle=False, drop_last=False, num_workers=num_workers, pin_memory=PIN_MEMORY) | ||
|
||
return loss_fn, trainloader, validloader | ||
|
||
|
||
def _build_cifar10(data_path, augmentations=True, normalize=True): | ||
"""Define CIFAR-10 with everything considered.""" | ||
# Load data | ||
trainset = torchvision.datasets.CIFAR10(root=data_path, train=True, download=True, transform=transforms.ToTensor()) | ||
validset = torchvision.datasets.CIFAR10(root=data_path, train=False, download=True, transform=transforms.ToTensor()) | ||
|
||
if cifar10_mean is None: | ||
data_mean, data_std = _get_meanstd(trainset) | ||
else: | ||
data_mean, data_std = cifar10_mean, cifar10_std | ||
|
||
# Organize preprocessing | ||
transform = transforms.Compose([ | ||
transforms.ToTensor(), | ||
transforms.Normalize(data_mean, data_std) if normalize else transforms.Lambda(lambda x: x)]) | ||
if augmentations: | ||
transform_train = transforms.Compose([ | ||
transforms.RandomCrop(32, padding=4), | ||
transforms.RandomHorizontalFlip(), | ||
transform]) | ||
trainset.transform = transform_train | ||
else: | ||
trainset.transform = transform | ||
validset.transform = transform | ||
|
||
return trainset, validset | ||
|
||
def _build_cifar100(data_path, augmentations=True, normalize=True): | ||
"""Define CIFAR-100 with everything considered.""" | ||
# Load data | ||
trainset = torchvision.datasets.CIFAR100(root=data_path, train=True, download=True, transform=transforms.ToTensor()) | ||
validset = torchvision.datasets.CIFAR100(root=data_path, train=False, download=True, transform=transforms.ToTensor()) | ||
|
||
if cifar100_mean is None: | ||
data_mean, data_std = _get_meanstd(trainset) | ||
else: | ||
data_mean, data_std = cifar100_mean, cifar100_std | ||
|
||
# Organize preprocessing | ||
transform = transforms.Compose([ | ||
transforms.ToTensor(), | ||
transforms.Normalize(data_mean, data_std) if normalize else transforms.Lambda(lambda x: x)]) | ||
if augmentations: | ||
transform_train = transforms.Compose([ | ||
transforms.RandomCrop(32, padding=4), | ||
transforms.RandomHorizontalFlip(), | ||
transform]) | ||
trainset.transform = transform_train | ||
else: | ||
trainset.transform = transform | ||
validset.transform = transform | ||
|
||
return trainset, validset | ||
|
||
|
||
def _build_mnist(data_path, augmentations=True, normalize=True): | ||
"""Define MNIST with everything considered.""" | ||
# Load data | ||
trainset = torchvision.datasets.MNIST(root=data_path, train=True, download=True, transform=transforms.ToTensor()) | ||
validset = torchvision.datasets.MNIST(root=data_path, train=False, download=True, transform=transforms.ToTensor()) | ||
|
||
if mnist_mean is None: | ||
cc = torch.cat([trainset[i][0].reshape(-1) for i in range(len(trainset))], dim=0) | ||
data_mean = (torch.mean(cc, dim=0).item(),) | ||
data_std = (torch.std(cc, dim=0).item(),) | ||
else: | ||
data_mean, data_std = mnist_mean, mnist_std | ||
|
||
# Organize preprocessing | ||
transform = transforms.Compose([ | ||
transforms.ToTensor(), | ||
transforms.Normalize(data_mean, data_std) if normalize else transforms.Lambda(lambda x: x)]) | ||
if augmentations: | ||
transform_train = transforms.Compose([ | ||
transforms.RandomCrop(28, padding=4), | ||
transforms.RandomHorizontalFlip(), | ||
transform]) | ||
trainset.transform = transform_train | ||
else: | ||
trainset.transform = transform | ||
validset.transform = transform | ||
|
||
return trainset, validset | ||
|
||
def _build_mnist_gray(data_path, augmentations=True, normalize=True): | ||
"""Define MNIST with everything considered.""" | ||
# Load data | ||
trainset = torchvision.datasets.MNIST(root=data_path, train=True, download=True, transform=transforms.ToTensor()) | ||
validset = torchvision.datasets.MNIST(root=data_path, train=False, download=True, transform=transforms.ToTensor()) | ||
|
||
if mnist_mean is None: | ||
cc = torch.cat([trainset[i][0].reshape(-1) for i in range(len(trainset))], dim=0) | ||
data_mean = (torch.mean(cc, dim=0).item(),) | ||
data_std = (torch.std(cc, dim=0).item(),) | ||
else: | ||
data_mean, data_std = mnist_mean, mnist_std | ||
|
||
# Organize preprocessing | ||
transform = transforms.Compose([ | ||
transforms.Grayscale(num_output_channels=1), | ||
transforms.ToTensor(), | ||
transforms.Normalize(data_mean, data_std) if normalize else transforms.Lambda(lambda x: x)]) | ||
if augmentations: | ||
transform_train = transforms.Compose([ | ||
transforms.Grayscale(num_output_channels=1), | ||
transforms.RandomCrop(28, padding=4), | ||
transforms.RandomHorizontalFlip(), | ||
transform]) | ||
trainset.transform = transform_train | ||
else: | ||
trainset.transform = transform | ||
validset.transform = transform | ||
|
||
return trainset, validset | ||
|
||
|
||
def _build_imagenet(data_path, augmentations=True, normalize=True): | ||
"""Define ImageNet with everything considered.""" | ||
# Load data | ||
trainset = torchvision.datasets.ImageNet(root=data_path, split='train', transform=transforms.ToTensor()) | ||
validset = torchvision.datasets.ImageNet(root=data_path, split='val', transform=transforms.ToTensor()) | ||
|
||
if imagenet_mean is None: | ||
data_mean, data_std = _get_meanstd(trainset) | ||
else: | ||
data_mean, data_std = imagenet_mean, imagenet_std | ||
|
||
# Organize preprocessing | ||
transform = transforms.Compose([ | ||
transforms.Resize(256), | ||
transforms.CenterCrop(224), | ||
transforms.ToTensor(), | ||
transforms.Normalize(data_mean, data_std) if normalize else transforms.Lambda(lambda x : x)]) | ||
if augmentations: | ||
transform_train = transforms.Compose([ | ||
transforms.RandomResizedCrop(224), | ||
transforms.RandomHorizontalFlip(), | ||
transforms.ToTensor(), | ||
transforms.Normalize(data_mean, data_std) if normalize else transforms.Lambda(lambda x : x)]) | ||
trainset.transform = transform_train | ||
else: | ||
trainset.transform = transform | ||
validset.transform = transform | ||
|
||
return trainset, validset | ||
|
||
|
||
def _get_meanstd(dataset): | ||
cc = torch.cat([trainset[i][0].reshape(3, -1) for i in range(len(trainset))], dim=1) | ||
data_mean = torch.mean(cc, dim=1).tolist() | ||
data_std = torch.std(cc, dim=1).tolist() | ||
return data_mean, data_std |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
"""Define various loss functions and bundle them with appropriate metrics.""" | ||
|
||
import torch | ||
import numpy as np | ||
|
||
|
||
class Loss: | ||
"""Abstract class, containing necessary methods. | ||
Abstract class to collect information about the 'higher-level' loss function, used to train an energy-based model | ||
containing the evaluation of the loss function, its gradients w.r.t. to first and second argument and evaluations | ||
of the actual metric that is targeted. | ||
""" | ||
|
||
def __init__(self): | ||
"""Init.""" | ||
pass | ||
|
||
def __call__(self, reference, argmin): | ||
"""Return l(x, y).""" | ||
raise NotImplementedError() | ||
return value, name, format | ||
|
||
def metric(self, reference, argmin): | ||
"""The actually sought metric.""" | ||
raise NotImplementedError() | ||
return value, name, format | ||
|
||
|
||
class PSNR(Loss): | ||
"""A classical MSE target. | ||
The minimized criterion is MSE Loss, the actual metric is average PSNR. | ||
""" | ||
|
||
def __init__(self): | ||
"""Init with torch MSE.""" | ||
self.loss_fn = torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean') | ||
|
||
def __call__(self, x=None, y=None): | ||
"""Return l(x, y).""" | ||
name = 'MSE' | ||
format = '.6f' | ||
if x is None: | ||
return name, format | ||
else: | ||
value = 0.5 * self.loss_fn(x, y) | ||
return value, name, format | ||
|
||
def metric(self, x=None, y=None): | ||
"""The actually sought metric.""" | ||
name = 'avg PSNR' | ||
format = '.3f' | ||
if x is None: | ||
return name, format | ||
else: | ||
value = self.psnr_compute(x, y) | ||
return value, name, format | ||
|
||
@staticmethod | ||
def psnr_compute(img_batch, ref_batch, batched=False, factor=1.0): | ||
"""Standard PSNR.""" | ||
def get_psnr(img_in, img_ref): | ||
mse = ((img_in - img_ref)**2).mean() | ||
if mse > 0 and torch.isfinite(mse): | ||
return (10 * torch.log10(factor**2 / mse)).item() | ||
elif not torch.isfinite(mse): | ||
return float('nan') | ||
else: | ||
return float('inf') | ||
|
||
if batched: | ||
psnr = get_psnr(img_batch.detach(), ref_batch) | ||
else: | ||
[B, C, m, n] = img_batch.shape | ||
psnrs = [] | ||
for sample in range(B): | ||
psnrs.append(get_psnr(img_batch.detach()[sample, :, :, :], ref_batch[sample, :, :, :])) | ||
psnr = np.mean(psnrs) | ||
|
||
return psnr | ||
|
||
|
||
class Classification(Loss): | ||
"""A classical NLL loss for classification. Evaluation has the softmax baked in. | ||
The minimized criterion is cross entropy, the actual metric is total accuracy. | ||
""" | ||
|
||
def __init__(self): | ||
"""Init with torch MSE.""" | ||
self.loss_fn = torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=-100, | ||
reduce=None, reduction='mean') | ||
|
||
def __call__(self, x=None, y=None): | ||
"""Return l(x, y).""" | ||
name = 'CrossEntropy' | ||
format = '1.5f' | ||
if x is None: | ||
return name, format | ||
else: | ||
value = self.loss_fn(x, y) | ||
return value, name, format | ||
|
||
def metric(self, x=None, y=None): | ||
"""The actually sought metric.""" | ||
name = 'Accuracy' | ||
format = '6.2%' | ||
if x is None: | ||
return name, format | ||
else: | ||
value = (x.data.argmax(dim=1) == y).sum().float() / y.shape[0] | ||
return value.detach(), name, format |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters