Skip to content

Codes used in the paper "When and How to Transfer Knowledge in Dynamic Multi-Objective Optimization" published at SSCI 2019.

License

Notifications You must be signed in to change notification settings

ahcheriet/RuanSSCI2019

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DOI

%% NOTES % This package contains the source codes of the paper % "Ruan, G., Minku, L. L., Menzel, S., Sendhoff, B., & Yao, X. (2019, December). When and how % to transfer knowledge in dynamic multi-objective optimisation. In 2019 IEEE Symposium Series % on Computational Intelligence (SSCI) (pp. 2034-2041). IEEE," % which is modified from the code of the paper % "Jiang M, Huang Z, Qiu L, et al. Transfer Learning based Dynamic Multiobjective Optimization Algorithms" % %% %

Benchmark functions

% % * <benchmark%20functions\html\getFunc.html getfunc.m>, returns benchmark functions of the paper % % ¡¶Benchmark Functions for CEC 2015 Special Session and Competition on Dynamic Multi-objective Optimization¡· % %% %

Metrices

% % * <Metrics\html\IGD.html IGD>, returns the IGD value % * <Metrics\html\react.html react>, returns the react value % %% %

DMOOP solvers

% % There are the source codes of all three algorithms listed in the paper. % % * <Tr-MOPSO\html\Main.html Tr-MOPSO> % * <Tr-NSGA-II\html\Main.html Tr-NSGA-II> % * <Tr-RMMEDA\html\Main.html Tr-RMMEDA> % %% %

TruePOF

% % There are the python scripts for generating the true POF and the % generated true POF for the 12 benchmark functions listed in CEC 2015 Special Session and Competition. % %% %

Usage

% % Please add the folder TR-DMOEA to the Matlab path, then run the Main.m in any Tr-** folder for test. % % After testing, the calculated metrics at every moment will be stored in a new folder .\Results .

About

Codes used in the paper "When and How to Transfer Knowledge in Dynamic Multi-Objective Optimization" published at SSCI 2019.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • MATLAB 70.8%
  • HTML 23.9%
  • C++ 4.7%
  • Objective-C 0.6%