Skip to content

Commit

Permalink
Merge pull request MDAnalysis#894 from jdetle/diffusion_rebase
Browse files Browse the repository at this point in the history
Diffusion Maps rebase, new PR for final review
  • Loading branch information
richardjgowers authored Jul 20, 2016
2 parents 69086bc + c3ebf76 commit fe2f620
Show file tree
Hide file tree
Showing 5 changed files with 443 additions and 3 deletions.
4 changes: 3 additions & 1 deletion package/CHANGELOG
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,9 @@ Changes
* Added protected variable _frame_index to to keep track of frame iteration
number in AnalysisBase
* Added new AlignTraj class for alignment that follows the new analysis API known
as Bauhaus style.
as Bauhaus style. (Issue #845)
* Added new diffusionmap module for dimension reduction that follows the
Bauhaus API. (Issue #857)

Deprecations (Issue #599)
* Use of rms_fit_trj deprecated in favor of AlignTraj class (Issue #845)
Expand Down
363 changes: 363 additions & 0 deletions package/MDAnalysis/analysis/diffusionmap.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,363 @@
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- http://www.MDAnalysis.org
# Copyright (c) 2006-2015 Naveen Michaud-Agrawal, Elizabeth J. Denning, Oliver Beckstein
# and contributors (see AUTHORS for the full list)
#
# Released under the GNU Public Licence, v2 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#

"""
Diffusion map --- :mod:`MDAnalysis.analysis.diffusionmap`
=====================================================================
:Authors: Eugen Hruska, John Detlefs
:Year: 2016
:Copyright: GNU Public License v2
This module contains the non-linear dimension reduction method diffusion map.
The eigenvectors of a diffusion matrix represent the 'collective coordinates'
of a molecule; the largest eigenvalues are the more dominant collective
coordinates. Assigning phyiscal meaning to the 'collective coordinates' is a
fundamentally difficult problem. The time complexity of the diffusion map is
:math:`O(N^3)`, where N is the number of frames in the trajectory, and the in-memory
storage complexity is :math:`O(N^2)`. Instead of a single trajectory a sample of
protein structures can be used. The sample should be equiblibrated, at least
locally. The order of the sampled structures in the trajectory is irrelevant.
The :ref:`Diffusion-Map-tutorial` shows how to use diffusion map for dimension
reduction.
More details about diffusion maps are in [deLaPorte1]_, [Lafon1]_ ,
[Ferguson1]_, and [Clementi1]_.
.. _Diffusion-Map-tutorial:
Diffusion Map tutorial
----------------------
The example uses files provided as part of the MDAnalysis test suite
(in the variables :data:`~MDAnalysis.tests.datafiles.PSF` and
:data:`~MDAnalysis.tests.datafiles.DCD`). This tutorial shows how to use the
Diffusion Map class.
First load all modules and test data ::
>>> import MDAnalysis as mda
>>> import MDAnalysis.analysis.diffusionmap as diffusionmap
>>> from MDAnalysis.tests.datafiles import PSF, DCD
Given a universe or atom group, we can create and eigenvalue decompose
the Diffusion Matrix from that trajectory using :class:`DiffusionMap`:: and get
the corresponding eigenvalues and eigenvectors.
>>> u = mda.Universe(PSF,DCD)
We leave determination of the appropriate scale parameter epsilon to the user,
[Clementi1]_ uses a complex method involving the k-nearest-neighbors of a
trajectory frame, whereas others simple use a trial-and-error approach with
a constant epsilon. Currently, the constant epsilon method is implemented
by MDAnalysis.
>>> dmap = diffusionmap.DiffusionMap(u, select='backbone', epsilon=2)
>>> dmap.run()
From here we can perform an embedding onto the k dominant eigenvectors. The
non-linearity of the map means there is no explicit relationship between the
lower dimensional space and our original trajectory. However, this is an
isometry (distance preserving map), which means that points close in the lower
dimensional space are close in the higher-dimensional space and vice versa.
In order to embed into the most relevant low-dimensional space, there should
exist some number of dominant eigenvectors, whose corresponding eigenvalues
diminish at a constant rate until falling off, this is referred to as a
spectral gap and should be somewhat apparent for a system at equilibrium with a
high number of frames.
>>> # first cell of a jupyter notebook should contain: %matplotlib inline
>>> import matplotlib.pyplot as plt
>>> f, ax = plt.subplots()
>>> upper_limit = # some reasonably high number less than the n_eigenvectors
>>> ax.plot(dmap.eigenvalues[:upper_limit])
>>> ax.set(xlabel ='eigenvalue index', ylabel='eigenvalue')
>>> plt.tight_layout()
From here we can transform into the diffusion space
>>> num_eigenvectors = # some number less than the number of frames after
>>> # inspecting for the spectral gap
>>> fit = dmap.transform(num_eigenvectors, time=1)
It can be difficult to interpret the data, and is left as a task
for the user. The `diffusion distance` between frames i and j is best
approximated by the euclidean distance between rows i and j of
self.diffusion_space.
.. _Distance-Matrix-tutorial:
Distance Matrix tutorial
------------------------
Often a, a custom distance matrix could be useful for local
epsilon determination or other manipulations on the diffusion
map method. The :class:`DistanceMatrix` exists in
:mod:`~MDAnalysis.analysis.diffusionmap` and can be passed
as an initialization argument for :class:`DiffusionMap`.
>>> import MDAnalysis as mda
>>> import MDAnalysis.analysis.diffusionmap as diffusionmap
>>> from MDAnalysis.tests.datafiles import PSF, DCD
Now create the distance matrix and pass it as an argument to
:class:`DiffusionMap`.
>>> u = mda.Universe(PSF,DCD)
>>> dist_matrix = diffusionmap.DistanceMatrix(u, select='all')
>>> dist_matrix.run()
>>> dmap = diffusionmap.DiffusionMap(dist_matrix)
>>> dmap.run()
Classes
-------
.. autoclass:: DiffusionMap
.. autoclass:: DistanceMatrix
References
----------
If you use this Dimension Reduction method in a publication, please
cite:
.. [Lafon1]
Coifman, Ronald R., Lafon, Stephane Diffusion maps. Appl. Comput. Harmon.
Anal. 21, 5–30 (2006).
For more information
--------------------
.. [deLaPorte1]
J. de la Porte, B. M. Herbst, W. Hereman, S. J. van der Walt.
An Introduction to Diffusion Maps.
.. [Clementi1]
Rohrdanz, M. A, Zheng, W, Maggioni, M, & Clementi, C.
Determination of reaction coordinates via locally scaled
diffusion map. J. Chem. Phys. 134, 124116 (2011).
.. [Ferguson1]
Ferguson, A. L.; Panagiotopoulos, A. Z.; Kevrekidis, I. G.
Debenedetti, P. G. Nonlinear dimensionality reduction in molecular simulation:
The diffusion map approach Chem. Phys. Lett. 509, 1−11 (2011)
.. If you choose the default metric, this module uses the fast QCP algorithm
[Theobald2005]_ to calculate the root mean square distance (RMSD) between
two coordinate sets (as implemented
in :func:`MDAnalysis.lib.qcprot.CalcRMSDRotationalMatrix`).
When using this module in published work please cite [Theobald2005]_.
"""
from six.moves import range
import logging
import warnings

from MDAnalysis.core.AtomGroup import Universe
import numpy as np

from .rms import rmsd
from .base import AnalysisBase

logger = logging.getLogger("MDAnalysis.analysis.diffusionmap")


class DistanceMatrix(AnalysisBase):
"""Calculate the pairwise distance between each frame in a trajectory
using a given metric
A distance matrix can be initialized on its own and used as an
initialization argument in :class:`DiffusionMap`. Refer to the
:ref:`Distance-Matrix-tutorial` for a demonstration.
Attributes
----------
atoms : AtomGroup
Selected atoms in trajectory subject to dimension reduction
dist_matrix : array, (n_frames, n_frames)
Array of all possible ij metric distances between frames in trajectory.
This matrix is symmetric with zeros on the diagonal.
Methods
-------
save(filename)
Save the `dist_matrix` to a given filename
"""
def __init__(self, u, select='all', metric=rmsd, cutoff=1E0-5,
weights=None, start=None, stop=None, step=None):
"""
Parameters
----------
u : universe `~MDAnalysis.core.AtomGroup.Universe`
The MD Trajectory for dimension reduction, remember that
computational cost of eigenvalue decomposition
scales at O(N^3) where N is the number of frames.
Cost can be reduced by increasing step interval or specifying a
start and stop.
select: str, optional
Any valid selection string for
:meth:`~MDAnalysis.core.AtomGroup.AtomGroup.select_atoms`
This selection of atoms is used to calculate the RMSD between
different frames. Water should be excluded.
metric : function, optional
Maps two numpy arrays to a float, is positive definite and
symmetric. The API for a metric requires that the arrays must have
equal length, and that the function should have weights as an
optional argument. Weights give each index value its own weight for
the metric calculation over the entire arrays. Default: metric is
set to rms.rmsd().
cutoff : float, optional
Specify a given cutoff for metric values to be considered equal,
Default: 1EO-5
weights : array, optional
Weights to be given to coordinates for metric calculation
start : int, optional
First frame of trajectory to analyse, Default: 0
stop : int, optional
Last frame of trajectory to analyse, Default: -1
step : int, optional
Step between frames to analyse, Default: 1
"""
self._u = u
traj = self._u.trajectory
self.atoms = self._u.select_atoms(select)
self._metric = metric
self._cutoff = cutoff
self._weights = weights
self._calculated = False
# remember that this must be called before referencing self.n_frames
self._setup_frames(traj, start, stop, step)

def _prepare(self):
self.dist_matrix = np.zeros((self.n_frames, self.n_frames))

def _single_frame(self):
iframe = self._ts.frame
i_ref = self.atoms.positions
# diagonal entries need not be calculated due to metric(x,x) == 0 in
# theory, _ts not updated properly. Possible savings by setting a
# cutoff for significant decimal places to sparsify matrix
for j, ts in enumerate(self._u.trajectory[iframe:self.stop:self.step]):
self._ts = ts
j_ref = self.atoms.positions
dist = self._metric(i_ref, j_ref, weights=self._weights)
self.dist_matrix[self._frame_index, j+self._frame_index] = (
dist if dist > self._cutoff else 0)
self.dist_matrix[j+self._frame_index, self._frame_index] = (
self.dist_matrix[self._frame_index, j+self._frame_index])
self._ts = self._u.trajectory[iframe]

def _conclude(self):
self._calculated = True

def save(self, filename):
np.save(filename, self.dist_matrix)
logger.info("Wrote the distance-squared matrix to file %r", filename)


class DiffusionMap(object):
"""Non-linear dimension reduction method
Dimension reduction with diffusion mapping of selected structures in a
trajectory.
Attributes
----------
eigenvalues: array (n_frames,)
Eigenvalues of the diffusion map
Methods
-------
run()
Constructs an anisotropic diffusion kernel and performs eigenvalue
decomposition on it.
transform(n_eigenvectors, time)
Perform an embedding of a frame into the eigenvectors representing
the collective coordinates.
"""

def __init__(self, u, epsilon=1, **kwargs):
"""
Parameters
-------------
u : MDAnalysis Universe or DistanceMatrix object
Can be a Universe, in which case one must supply kwargs for the
initialization of a DistanceMatrix. Otherwise, this can be a
DistanceMatrix already initialized. Either way, this will be made
into a diffusion kernel.
epsilon : Float
Specifies the method used for the choice of scale parameter in the
diffusion map. More information in [Lafon1]_, [Ferguson1]_ and
[Clementi1]_, Default: 1.
**kwargs
Parameters to be passed for the initialization of a
:class:`DistanceMatrix`.
"""
if isinstance(u, Universe):
self._dist_matrix = DistanceMatrix(u, **kwargs)
elif isinstance(u, DistanceMatrix):
self._dist_matrix = u
else:
raise ValueError("U is not a Universe or DistanceMatrix and"
" so the DiffusionMap has no data to work with.")
self._epsilon = epsilon
# important for transform function and length of .run() method
self._n_frames = self._dist_matrix.n_frames
if self._n_frames > 5000:
warnings.warn("The distance matrix is very large, and can "
"be very slow to compute. Consider picking a larger "
"step size in distance matrix initialization.")


def run(self):
""" Create and decompose the diffusion matrix in preparation
for a diffusion map."""
# run only if distance matrix not already calculated
if not self._dist_matrix._calculated:
self._dist_matrix.run()
self._scaled_matrix = (self._dist_matrix.dist_matrix ** 2 /
self._epsilon)
# take negative exponent of scaled matrix to create Isotropic kernel
self._kernel = np.exp(-self._scaled_matrix)
D_inv = np.diag(1 / self._kernel.sum(1))
self._diff = np.dot(D_inv, self._kernel)
self._eigenvals, self._eigenvectors = np.linalg.eig(self._diff)
sort_idx = np.argsort(self._eigenvals)[::-1]
self.eigenvalues = self._eigenvals[sort_idx]
self._eigenvectors = self._eigenvectors[sort_idx]
self._calculated = True
return self

def transform(self, n_eigenvectors, time):
""" Embeds a trajectory via the diffusion map
Parameters
---------
n_eigenvectors : int
The number of dominant eigenvectors to be used for
diffusion mapping
time : float
Exponent that eigenvalues are raised to for embedding, for large
values, more dominant eigenvectors determine diffusion distance.
Return
------
diffusion_space : array (n_frames, n_eigenvectors)
The diffusion map embedding as defined by [Ferguson1]_.
"""
return (self._eigenvectors[1:n_eigenvectors+1,].T *
(self.eigenvalues[1:n_eigenvectors+1]**time))
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
.. automodule:: MDAnalysis.analysis.diffusionmap
Loading

0 comments on commit fe2f620

Please sign in to comment.