Overview
Target Frameworks
Platforms
Prerequisites
Installation
Usage
API
Performance
Building and Testing
Projects Using this Library
Related Concepts
Contributing
About
Jering.Javascript.NodeJS enables you to invoke javascript in NodeJS, from C#. With this ability, you can use Node.js-javascript libraries and scripts from your C# projects.
You can use this library as a replacement for the obsoleted Microsoft.AspNetCore.NodeServices.
InvokeFromFileAsync<T>
replacesINodeService
'sInvokeAsync<T>
andInvokeExportAsync<T>
.
This library is flexible - it provides both a dependency injection (DI) based API and a static API. Also, it supports invoking both in-memory and on-disk javascript.
Static API example:
string javascriptModule = @"
module.exports = (callback, x, y) => { // Module must export a function that takes a callback as its first parameter
var result = x + y; // Your javascript logic
callback(null /* If an error occurred, provide an error object or message */, result); // Call the callback when you're done.
}";
// Invoke javascript
int result = await StaticNodeJSService.InvokeFromStringAsync<int>(javascriptModule, args: new object[] { 3, 5 });
// result == 8
Assert.Equal(8, result);
DI-based API example:
string javascriptModule = @"
module.exports = (callback, x, y) => { // Module must export a function that takes a callback as its first parameter
var result = x + y; // Your javascript logic
callback(null /* If an error occurred, provide an error object or message */, result); // Call the callback when you're done.
}";
// Create an INodeJSService
var services = new ServiceCollection();
services.AddNodeJS();
ServiceProvider serviceProvider = services.BuildServiceProvider();
INodeJSService nodeJSService = serviceProvider.GetRequiredService<INodeJSService>();
// Invoke javascript
int result = await nodeJSService.InvokeFromStringAsync<int>(javascriptModule, args: new object[] { 3, 5 });
// result == 8
Assert.Equal(8, result);
- .NET Standard 2.0
- .NET Framework 4.6.1
- .NET Core 3.1
- .NET 5.0
- .NET 6.0
- Windows
- macOS
- Linux
You'll need to install NodeJS and add the NodeJS executable's directory to the Path
environment variable.
Using Package Manager:
PM> Install-Package Jering.Javascript.NodeJS
Using .NET CLI:
> dotnet add package Jering.Javascript.NodeJS
This section explains how to use this library. Topics:
Using the DI-Based API
Using the Static API
Invoking Javascript
Debugging Javascript
Configuring
Customizing Logic
Enabling Multi-Process Concurrency
First, create an INodeJSService
. You can use any DI framework that has adapters for Microsoft.Extensions.DependencyInjection.
Here, we'll use vanilla Microsoft.Extensions.DependencyInjection:
var services = new ServiceCollection();
services.AddNodeJS();
ServiceProvider serviceProvider = services.BuildServiceProvider();
INodeJSService nodeJSService = serviceProvider.GetRequiredService<INodeJSService>();
Once you've got an INodeJSService
, you can invoke javascript using its invoke methods. All invoke methods are thread-safe.
Here's one of its invoke-from-string methods:
string? result = nodeJSService.InvokeFromStringAsync<Result>("module.exports = (callback, message) => callback(null, message);", args: new[] { "success" });
Assert.Equal("success", result);
We describe all of the invoke methods in detail later on.
No clean up is required when you're done:
the NodeJS process INodeJSService
sends javascript invocations to kills itself when it detects that its parent process has died.
If you'd like to manually kill the NodeJS process, you can call INodeJSService.Dispose()
.
Once the instance is disposed, all invoke methods throw ObjectDisposedException
.
This is important to keep in mind since services.AddNodeJS()
registers INodeJSService
as a singleton (same instance injected every where).
This library provides a static alternative to the DI-based API. StaticNodeJSService
wraps an INodeJSService
, exposing most of its public members.
With the static API, you don't need to worry about creating or managing INodeJSService
. Example usage;
string result = await StaticNodeJSService
.InvokeFromStringAsync<Result>("module.exports = (callback, message) => callback(null, message);", args: new[] { "success" });
Assert.Equal("success", result);
StaticNodeJSService
's invoke methods are thread-safe.
Clean-up wise, StaticNodeJSService.DisposeServiceProvider()
kills the NodeJS process immediately.
Alternatively, the NodeJS process kills itself when it detects that its parent process has died.
Whether you use the static API or the DI-based API depends on your development needs. If you're already using DI and/or you want to mock
out INodeJSService
in your tests and/or you want to customize services, use the DI-based API. Otherwise,
the static API works fine.
We'll begin with the javascript side of things. You'll need a NodeJS module that exports either a function or an object containing functions. Exported functions can be of two forms:
These functions take a callback as their first argument, and call the callback when they're done.
The callback takes two optional arguments:
- The first argument is an error or an error message. It must be of type
Error
orstring
. - The second argument is the result. It must be a JSON-serializable type, a
string
, or astream.Readable
.
Note: this is known as an error-first callback. Such callbacks are used for error handling in NodeJS asynchronous code (check out NodeJS Event Loop for more information on asynchrony in NodeJS).
As mentioned before, you'll need a module that exports either a function or an object containing functions. This is a module that exports a valid function:
module.exports = (callback, arg1, arg2, arg3) => {
... // Do something with args
callback(null /* error */, result /* result */);
}
This is a module that exports an object containing valid functions:
module.exports = {
doSomething: (callback, arg1) => {
... // Do something with arg
callback(null, result);
},
doSomethingElse: (callback) => {
... // Do something else
callback(null, result);
}
}
If an error or error message is passed to the callback, it's sent back to the calling .NET process, where an InvocationException
is thrown.
Async functions are the second valid function form. They're syntactic sugar for the function form described in the previous section (check out Callbacks, Promises and Async/Await for a summary on how callbacks, promises and async/await are related).
This is a module that exports a valid function:
module.exports = async (arg1, arg2) => {
... // Do something with args
return result;
}
And this is a module that exports an object containing valid functions:
module.exports = {
doSomething: async (arg1, arg2, arg3, arg4) => {
... // Do something with args
// async functions can explicitly return promises
return new Promise((resolve, reject) => {
resolve(result);
});
},
doSomethingElse: async (arg1) => {
... // Do something with arg
return result;
}
}
If an error is thrown in an async function, the error message is sent back to the calling .NET process, where an InvocationException
is thrown:
module.exports = async () => {
throw new Error('error message');
}
Now that we've covered the javascript side of things, let's invoke some javascript from C#.
If you have a javascript file named exampleModule.js
(located in NodeJSProcessOptions.ProjectPath
):
module.exports = (callback, message) => callback(null, { message: message });
And a .NET class Result
:
public class Result
{
public string? Message { get; set; }
}
You can invoke the javascript using InvokeFromFileAsync<T>
:
Result? result = await nodeJSService.InvokeFromFileAsync<Result>("exampleModule.js", args: new[] { "success" });
Assert.Equal("success", result?.Message);
If you change exampleModule.js
to export an object containing functions:
module.exports = {
appendExclamationMark: (callback, message) => callback(null, { message: message + '!' }),
appendFullStop: (callback, message) => callback(null, { message: message + '.' })
}
You can invoke a specific function by specifying its name:
// Invoke appendExclamationMark
Result? result = await nodeJSService.InvokeFromFileAsync<Result>("exampleModule.js", "appendExclamationMark", args: new[] { "success" });
Assert.Equal("success!", result?.Message);
When using InvokeFromFileAsync
, NodeJS always caches the module using the .js
file's absolute path as cache identifier. This is great for
performance, since the file will not be re-read or recompiled on subsequent invocations.
You can invoke javascript in string form using InvokeFromStringAsync<T>
:
string module = "module.exports = (callback, message) => callback(null, { message: message });";
// Invoke javascript
Result? result = await nodeJSService.InvokeFromStringAsync<Result>(module, args: new[] { "success" });
Assert.Equal("success", result?.Message);
In the above example, the module string is sent to NodeJS and recompiled on every invocation.
If you're planning to invoke a module repeatedly, to avoid resending and recompiling, you'll want NodeJS to cache the module.
For that, you'll have to specify a custom cache identifier, since unlike a file, a string has no "absolute file path" for NodeJS to identify it by. Once NodeJS has cached the module, you can invoke from the NodeJS cache:
string cacheIdentifier = "exampleModule";
// Try to invoke from the NodeJS cache
(bool success, Result? result) = await nodeJSService.TryInvokeFromCacheAsync<Result>(cacheIdentifier, args: new[] { "success" });
// If the module hasn't been cached, cache it. If the NodeJS process dies and restarts, the cache will be invalidated, so always check whether success is false.
if(!success)
{
// This is a trivialized example. In practice, to avoid holding large module strings in memory, you might retrieve the module
// string from an on-disk or remote source.
string moduleString = "module.exports = (callback, message) => callback(null, { message: message });";
// Send the module string to NodeJS where it's compiled, invoked and cached.
result = await nodeJSService.InvokeFromStringAsync<Result>(moduleString, cacheIdentifier, args: new[] { "success" });
}
Assert.Equal("success", result?.Message);
The following InvokeFromStringAsync<T>
overload abstracts away the above example's operations for you.
We recommend it over the logic in the above example. If you've enabled multi-process concurrency, you must use this overload:
string module = "module.exports = (callback, message) => callback(null, { message: message });";
string cacheIdentifier = "exampleModule";
// This is a trivialized example. In practice, to avoid holding large module strings in memory, you might retrieve the module
// string from an on-disk or remote source.
Func<string> moduleFactory = () => module;
// Initially, sends only cacheIdentifier to NodeJS. If the module hasn't been cached, NodeJS lets the .NET process know.
// The .NET process then creates the module string using moduleFactory and sends it to NodeJS where it's compiled, invoked and cached.
Result? result = await nodeJSService.InvokeFromStringAsync<Result>(moduleFactory, cacheIdentifier, args: new[] { "success" });
Assert.Equal("success", result?.Message);
Like when invoking javascript from a file, if the module exports an object containing functions, you can invoke a specific function by specifying its name.
You can invoke javascript in stream form using InvokeFromStreamAsync<T>
:
// Write the module to a MemoryStream for demonstration purposes.
streamWriter.Write("module.exports = (callback, message) => callback(null, {message: message});");
streamWriter.Flush();
memoryStream.Position = 0;
Result? result = await nodeJSService.InvokeFromStreamAsync<Result>(memoryStream, args: new[] { "success" });
Assert.Equal("success", result?.Message);
InvokeFromStreamAsync
behaves like InvokeFromStringAsync
with regard to caching, refer to Invoking Javascript in String Form for details.
Why bother invoking from streams? If your module is in stream form to begin with, for example, a NetworkStream
, you avoid allocating a string. Avoiding string
allocations can improve performance.
If you're using the DI-based API, configure INodeJSService
using the .NET options pattern. For example:
var services = new ServiceCollection();
services.AddNodeJS();
// Options for the NodeJS process, here we enable debugging
services.Configure<NodeJSProcessOptions>(options => options.NodeAndV8Options = "--inspect-brk");
// Options for the INodeJSService implementation
// - HttpNodeJSService is the default INodeJSService implementation. It communicates with the NodeJS process via HTTP. Below, we set the HTTP version it uses to HTTP/2.0.
// - HttpNodeJSService extends OutOfProcessNodeJSService, an abstraction for NodeJS process management. Below we set the timeout for invocations to -1 (infinite).
services.Configure<OutOfProcessNodeJSServiceOptions>(options => options.InvocationTimeoutMS = -1);
services.Configure<HttpNodeJSServiceOptions>(options => options.Version = HttpVersion.Version20);
ServiceProvider serviceProvider = services.BuildServiceProvider();
INodeJSService nodeJSService = serviceProvider.GetRequiredService<INodeJSService>(); // Configured INodeJSService
You can find the full list of options in the API section:
Use StaticNodeJSService.Configure<T>
to configure StaticNodeJSService
:
// Options for the NodeJS process, here we enable debugging
StaticNodeJSService.Configure<NodeJSProcessOptions>(options => options.NodeAndV8Options = "--inspect-brk");
// Options for the INodeJSService implementation
// - HttpNodeJSService is the default INodeJSService implementation. It communicates with the NodeJS process via HTTP. Below, we set the HTTP version it uses to HTTP/2.0.
// - HttpNodeJSService extends OutOfProcessNodeJSService, an abstraction for NodeJS process management. Below we set the timeout for invocations to -1 (infinite).
StaticNodeJSService.Configure<OutOfProcessNodeJSServiceOptions>(options => options.InvocationTimeoutMS = -1);
StaticNodeJSService.Configure<HttpNodeJSServiceOptions>(options => options.Version = HttpVersion.Version20);
Configurations made using StaticNodeJSService.Configure<T>
only apply to javascript invocations made using the static API.
We recommend making these configurations at application startup since:
StaticNodeJSService.Configure<T>
is not thread-safe.- The NodeJS process is recreated after every
StaticNodeJSService.Configure<T>
call.
Follow these steps to debug javascript invoked using INodeJSService
:
- Add
debugger
statements to your javascript module. - Configure the following options:
NodeJSProcessOptions.NodeAndV8Options
=--inspect-brk
andOutOfProcessNodeJSServiceOptions.InvocationTimeoutMS
=-1
. - Create an
INodeJSService
(or useStaticNodeJSService
). - Call a javascript invoking method.
- Navigate to
chrome://inspect/
in Chrome. - Click "Open dedicated DevTools for Node".
- Click continue to advance to your
debugger
statements.
You can customize logic by overwriting DI services.
For example, if you'd like to customize how data sent to NodeJS is serialized/deserialized, create a custom IJsonService
implementation:
// Create a custom implementation of IJsonService
public class MyJsonService : IJsonService
{
public ValueTask<T?> DeserializeAsync<T>(Stream stream, CancellationToken cancellationToken = default)
{
... // Custom deserializetion logic
}
public Task SerializeAsync<T>(Stream stream, T value, CancellationToken cancellationToken = default)
{
... // Custom serialization logic
}
}
And overwrite IJsonService
's DI service:
var services = new ServiceCollection();
services.AddNodeJS();
// Overwrite the DI service
services.AddSingleton<IJsonService, MyJsonService>();
ServiceProvider serviceProvider = services.BuildServiceProvider();
INodeJSService nodeJSService = serviceProvider.GetRequiredService<INodeJSService>();
These are some of the services you can overwrite:
Interface | Description |
---|---|
IJsonService |
An abstraction for JSON serialization/deserialization. |
IHttpClientService |
An abstraction for HttpClient . |
INodeJSProcessFactory |
An abstraction for NodeJS process creation. |
IHttpContentFactory |
An abstraction for HttpContent creation. |
INodeJSService |
An abstraction for invoking code in NodeJS. |
IEmbeddedResourcesService |
An abstraction for reading of embedded resources. |
You can find the full list of services in NodeJSServiceCollectionExtensions.cs
.
Use StaticNodeJSService.SetServices
to customize the logic executed by StaticNodeJSService
's underlying INodeJSService
:
var services = new ServiceCollection();
services.AddNodeJS();
// Overwrite the DI service
services.AddSingleton<IJsonService, MyJsonService>();
StaticNodeJSService.SetServices(services);
We recommend only calling StaticNodeJSService.SetServices
at application startup since:
StaticNodeJSService.SetServices
is not thread-safe.- The NodeJS process is recreated after every
StaticNodeJSService.SetServices
call.
To enable multi-process concurrency, set OutOfProcessNodeJSServiceOptions.Concurrency
to Concurrency.MultiProcess
:
services.Configure<OutOfProcessNodeJSServiceOptions>(options => {
options.Concurrency = Concurrency.MultiProcess; // Concurrency.None by default
options.ConcurrencyDegree = 8; // Number of processes. Defaults to the number of logical processors on your machine.
);
(see Configuring for more information on configuring)
Invocations will be distributed among multiple NodeJS processes using round-robin load balancing.
Multi-process concurrency speeds up CPU-bound workloads. We ran a benchmark executing the following logic 25-times, concurrently in NodeJS:
// Minimal CPU-bound operation
module.exports = (callback) => {
// Block CPU
var end = new Date().getTime() + 100; // 100ms block
while (new Date().getTime() < end) { /* do nothing */ }
callback(null);
};
The logic fully utilizes a CPU for 100ms.
With multi-process concurrency disabled, a single NodeJS process performs invocations synchronously, so the benchmark takes ~2500ms (25 tasks x 100ms).
With multi-process concurrency enabled, on an 8-core machine, the benchmark takes ~400ms ((25 tasks x 100ms) / 8 + overhead).
View the full results of our multi-process concurrency benchmark here.
-
You can't use multi-process concurrency if your logic persists data between invocations. For example:
const string javascriptModule = @" var lastResult; module.exports = (callback, x) => { var result = x + (lastResult ? lastResult : 0); // Use persisted value here lastResult = result; // Persist callback(null, result); }"; // result == 3 int result = await StaticNodeJSService.InvokeFromStringAsync<int>(javascriptModule, "customIdentifier", args: new object[] { 3 }); // Intended for result == 8, but result == 5 since different processes perform the invocations result = await StaticNodeJSService.InvokeFromStringAsync<int>(javascriptModule, "customIdentifier", args: new object[] { 5 });
-
With concurrency enabled, you can't use the following caching pattern (previously described in Inoke Javascript in String Form):
string cacheIdentifier = "exampleModule"; // If you have an even number of NodeJS processes, success will always be false since the resulting caching attempt is // sent to the next NodeJS process. (bool success, Result? result) = await nodeJSService.TryInvokeFromCacheAsync<Result>(cacheIdentifier, args: new[] { "success" }); // False, so we attempt to cache if(!success) { string moduleString = "module.exports = (callback, message) => callback(null, { message: message });"; // Because of round-robin load balancing, this caching attempt is sent to the next NodeJS process. result = await nodeJSService.InvokeFromStringAsync<Result>(moduleString, cacheIdentifier, args: new[] { "success" }); } Assert.Equal("success", result?.Message);
Instead, call an overload that takes a
moduleFactory
argument. These overloads atomically handle caching and invoking:string module = "module.exports = (callback, message) => callback(null, { message: message });"; string cacheIdentifier = "exampleModule"; // This is a trivialized example. In practice, to avoid holding large module strings in memory, you might retrieve the module // string from an on-disk or remote source. Func<string> moduleFactory = () => module; // Initially, sends only cacheIdentifier to NodeJS. If the module hasn't been cached, NodeJS lets the .NET process know. // The .NET process then creates the module string using moduleFactory and sends it to *the same* NodeJS process where it's compiled, invoked and cached. Result? result = await nodeJSService.InvokeFromStringAsync<Result>(moduleFactory, cacheIdentifier, args: new[] { "success" }); Assert.Equal("success", result?.Message);
Invokes a function from a NodeJS module on disk.
Task<T?> InvokeFromFileAsync<T>(string modulePath, [string? exportName = null], [object?[]? args = null], [CancellationToken cancellationToken = default(CancellationToken)])
T
The type of value returned. This may be a JSON-serializable type, string
, or Stream
.
modulePath string
The path to the module relative to NodeJSProcessOptions.ProjectPath
. This value must not be null
, whitespace or an empty string.
exportName string
The name of the function in module.exports
to invoke. If this value is null
, module.exports
is assumed to be a function and is invoked.
args object[]
The sequence of JSON-serializable arguments to pass to the function to invoke. If this value is null
, no arguments are passed.
cancellationToken CancellationToken
The cancellation token for the asynchronous operation.
The Task
representing the asynchronous operation.
ArgumentException
Thrown if modulePath
is null
, whitespace or an empty string.
ConnectionException
Thrown if unable to connect to NodeJS.
InvocationException
Thrown if the invocation request times out.
InvocationException
Thrown if a NodeJS error occurs.
ObjectDisposedException
Thrown if this instance is disposed or if it attempts to use a disposed dependency.
OperationCanceledException
Thrown if cancellationToken
is cancelled.
To avoid rereads and recompilations on subsequent invocations, NodeJS caches the module using the its absolute path as cache identifier.
If we have a file named exampleModule.js (located in NodeJSProcessOptions.ProjectPath
), with contents:
module.exports = (callback, message) => callback(null, { resultMessage: message });
Using the class Result
:
public class Result
{
public string? Message { get; set; }
}
The following assertion will pass:
Result? result = await nodeJSService.InvokeFromFileAsync<Result>("exampleModule.js", args: new[] { "success" });
Assert.Equal("success", result?.Message);
Invokes a function from a NodeJS module on disk.
Task InvokeFromFileAsync(string modulePath, [string? exportName = null], [object?[]? args = null], [CancellationToken cancellationToken = default(CancellationToken)])
modulePath string
The path to the module relative to NodeJSProcessOptions.ProjectPath
. This value must not be null
, whitespace or an empty string.
exportName string
The name of the function in module.exports
to invoke. If this value is null
, module.exports
is assumed to be a function and is invoked.
args object[]
The sequence of JSON-serializable arguments to pass to the function to invoke. If this value is null
, no arguments are passed.
cancellationToken CancellationToken
The cancellation token for the asynchronous operation.
ArgumentException
Thrown if modulePath
is null
, whitespace or an empty string.
ConnectionException
Thrown if unable to connect to NodeJS.
InvocationException
Thrown if the invocation request times out.
InvocationException
Thrown if a NodeJS error occurs.
ObjectDisposedException
Thrown if this instance is disposed or if it attempts to use a disposed dependency.
OperationCanceledException
Thrown if cancellationToken
is cancelled.
To avoid rereads and recompilations on subsequent invocations, NodeJS caches the module using the its absolute path as cache identifier.
Invokes a function from a NodeJS module in string form.
Task<T?> InvokeFromStringAsync<T>(string moduleString, [string? cacheIdentifier = null], [string? exportName = null], [object?[]? args = null], [CancellationToken cancellationToken = default(CancellationToken)])
T
The type of value returned. This may be a JSON-serializable type, string
, or Stream
.
moduleString string
The module in string form. This value must not be null
, whitespace or an empty string.
cacheIdentifier string
The module's cache identifier. If this value is null
, NodeJS ignores its module cache..
exportName string
The name of the function in module.exports
to invoke. If this value is null
, module.exports
is assumed to be a function and is invoked.
args object[]
The sequence of JSON-serializable arguments to pass to the function to invoke. If this value is null
, no arguments are passed.
cancellationToken CancellationToken
The cancellation token for the asynchronous operation.
The Task
representing the asynchronous operation.
ArgumentException
Thrown if moduleString
is null
, whitespace or an empty string.
ConnectionException
Thrown if unable to connect to NodeJS.
InvocationException
Thrown if the invocation request times out.
InvocationException
Thrown if a NodeJS error occurs.
ObjectDisposedException
Thrown if this instance is disposed or if it attempts to use a disposed dependency.
OperationCanceledException
Thrown if cancellationToken
is cancelled.
If cacheIdentifier
is null
, sends moduleString
to NodeJS where it's compiled it for one-time use.
If cacheIdentifier
isn't null
, sends both moduleString
and cacheIdentifier
to NodeJS. NodeJS reuses the module if it's already cached. Otherwise, it compiles and caches the module.
Once the module is cached, you may use INodeJSService.TryInvokeFromCacheAsync<T>
to invoke directly from the cache, avoiding the overhead of sending moduleString
.
Using the class Result
:
public class Result
{
public string? Message { get; set; }
}
The following assertion will pass:
Result? result = await nodeJSService.InvokeFromStringAsync<Result>("module.exports = (callback, message) => callback(null, { resultMessage: message });",
args: new[] { "success" });
Assert.Equal("success", result?.Message);
Invokes a function from a NodeJS module in string form.
Task InvokeFromStringAsync(string moduleString, [string? cacheIdentifier = null], [string? exportName = null], [object?[]? args = null], [CancellationToken cancellationToken = default(CancellationToken)])
moduleString string
The module in string form. This value must not be null
, whitespace or an empty string.
cacheIdentifier string
The module's cache identifier. If this value is null
, NodeJS ignores its module cache..
exportName string
The name of the function in module.exports
to invoke. If this value is null
, module.exports
is assumed to be a function and is invoked.
args object[]
The sequence of JSON-serializable arguments to pass to the function to invoke. If this value is null
, no arguments are passed.
cancellationToken CancellationToken
The cancellation token for the asynchronous operation.
The Task
representing the asynchronous operation.
ArgumentException
Thrown if moduleString
is null
, whitespace or an empty string.
ConnectionException
Thrown if unable to connect to NodeJS.
InvocationException
Thrown if the invocation request times out.
InvocationException
Thrown if a NodeJS error occurs.
ObjectDisposedException
Thrown if this instance is disposed or if it attempts to use a disposed dependency.
OperationCanceledException
Thrown if cancellationToken
is cancelled.
If cacheIdentifier
is null
, sends moduleString
to NodeJS where it's compiled for one-time use.
If cacheIdentifier
isn't null
, sends both moduleString
and cacheIdentifier
to NodeJS. NodeJS reuses the module if it's already cached. Otherwise, it compiles and caches the module.
Once the module is cached, you may use INodeJSService.TryInvokeFromCacheAsync<T>
to invoke directly from the cache, avoiding the overhead of sending moduleString
.
Invokes a function from a NodeJS module in string form.
Task<T?> InvokeFromStringAsync<T>(Func<string> moduleFactory, string cacheIdentifier, [string? exportName = null], [object?[]? args = null], [CancellationToken cancellationToken = default(CancellationToken)])
T
The type of value returned. This may be a JSON-serializable type, string
, or Stream
.
moduleFactory Func<string>
The factory that creates the module string. This value must not be null
and it must not return null
, whitespace or an empty string.
cacheIdentifier string
The module's cache identifier. This value must not be null
.
exportName string
The name of the function in module.exports
to invoke. If this value is null
, module.exports
is assumed to be a function and is invoked.
args object[]
The sequence of JSON-serializable arguments to pass to the function to invoke. If this value is null
, no arguments are passed.
cancellationToken CancellationToken
The cancellation token for the asynchronous operation.
The Task
representing the asynchronous operation.
ArgumentNullException
Thrown if module is not cached but moduleFactory
is null
.
ArgumentNullException
Thrown if cacheIdentifier
is null
.
ArgumentException
Thrown if moduleFactory
returns null
, whitespace or an empty string.
ConnectionException
Thrown if unable to connect to NodeJS.
InvocationException
Thrown if the invocation request times out.
InvocationException
Thrown if a NodeJS error occurs.
ObjectDisposedException
Thrown if this instance is disposed or if it attempts to use a disposed dependency.
OperationCanceledException
Thrown if cancellationToken
is cancelled.
Initially, sends only cacheIdentifier
to NodeJS. NodeJS reuses the module if it's already cached. Otherwise, it informs the .NET process that the module isn't cached.
The .NET process then creates the module string using moduleFactory
and send it to NodeJS where it's compiled, invoked and cached.
If exportName
is null
, module.exports
is assumed to be a function and is invoked. Otherwise, invokes the function named exportName
in module.exports
.
Invokes a function from a NodeJS module in string form.
Task InvokeFromStringAsync(Func<string> moduleFactory, string cacheIdentifier, [string? exportName = null], [object?[]? args = null], [CancellationToken cancellationToken = default(CancellationToken)])
moduleFactory Func<string>
The factory that creates the module string. This value must not be null
and it must not return null
, whitespace or an empty string.
cacheIdentifier string
The module's cache identifier. This value must not be null
.
exportName string
The name of the function in module.exports
to invoke. If this value is null
, module.exports
is assumed to be a function and is invoked.
args object[]
The sequence of JSON-serializable arguments to pass to the function to invoke. If this value is null
, no arguments are passed.
cancellationToken CancellationToken
The cancellation token for the asynchronous operation.
The Task
representing the asynchronous operation.
ArgumentNullException
Thrown if module is not cached but moduleFactory
is null
.
ArgumentNullException
Thrown if cacheIdentifier
is null
.
ArgumentException
Thrown if moduleFactory
returns null
, whitespace or an empty string.
ConnectionException
Thrown if unable to connect to NodeJS.
InvocationException
Thrown if the invocation request times out.
InvocationException
Thrown if a NodeJS error occurs.
ObjectDisposedException
Thrown if this instance is disposed or if it attempts to use a disposed dependency.
OperationCanceledException
Thrown if cancellationToken
is cancelled.
Initially, sends only cacheIdentifier
to NodeJS. NodeJS reuses the module if it's already cached. Otherwise, it informs the .NET process that the module isn't cached.
The .NET process then creates the module string using moduleFactory
and send it to NodeJS where it's compiled, invoked and cached.
If exportName
is null
, module.exports
is assumed to be a function and is invoked. Otherwise, invokes the function named exportName
in module.exports
.
Invokes a function from a NodeJS module in stream form.
Task<T?> InvokeFromStreamAsync<T>(Stream moduleStream, [string? cacheIdentifier = null], [string? exportName = null], [object?[]? args = null], [CancellationToken cancellationToken = default(CancellationToken)])
T
The type of value returned. This may be a JSON-serializable type, string
, or Stream
.
moduleStream Stream
The module in stream form. This value must not be null
.
cacheIdentifier string
The module's cache identifier. If this value is null
, NodeJS ignores its module cache..
exportName string
The name of the function in module.exports
to invoke. If this value is null
, module.exports
is assumed to be a function and is invoked.
args object[]
The sequence of JSON-serializable arguments to pass to the function to invoke. If this value is null
, no arguments are passed.
cancellationToken CancellationToken
The cancellation token for the asynchronous operation.
The Task
representing the asynchronous operation.
ArgumentException
Thrown if moduleStream
is null
.
ConnectionException
Thrown if unable to connect to NodeJS.
InvocationException
Thrown if the invocation request times out.
InvocationException
Thrown if a NodeJS error occurs.
ObjectDisposedException
Thrown if this instance is disposed or if it attempts to use a disposed dependency.
OperationCanceledException
Thrown if cancellationToken
is cancelled.
If cacheIdentifier
is null
, sends the stream to NodeJS where it's compiled for one-time use.
If cacheIdentifier
isn't null
, sends both the stream and cacheIdentifier
to NodeJS. NodeJS reuses the module if it's already cached. Otherwise, it compiles and caches the module.
Once the module is cached, you may use INodeJSService.TryInvokeFromCacheAsync<T>
to invoke directly from the cache, avoiding the overhead of sending the module stream.
Using the class Result
:
public class Result
{
public string? Message { get; set; }
}
The following assertion will pass:
using (var memoryStream = new MemoryStream())
using (var streamWriter = new StreamWriter(memoryStream))
{
// Write the module to a MemoryStream for demonstration purposes.
streamWriter.Write("module.exports = (callback, message) => callback(null, {resultMessage: message});");
streamWriter.Flush();
memoryStream.Position = 0;
Result? result = await nodeJSService.InvokeFromStreamAsync<Result>(memoryStream, args: new[] { "success" });
Assert.Equal("success", result?.Message);
}
Invokes a function from a NodeJS module in stream form.
Task InvokeFromStreamAsync(Stream moduleStream, [string? cacheIdentifier = null], [string? exportName = null], [object?[]? args = null], [CancellationToken cancellationToken = default(CancellationToken)])
moduleStream Stream
The module in stream form. This value must not be null
.
cacheIdentifier string
The module's cache identifier. If this value is null
, NodeJS ignores its module cache..
exportName string
The name of the function in module.exports
to invoke. If this value is null
, module.exports
is assumed to be a function and is invoked.
args object[]
The sequence of JSON-serializable arguments to pass to the function to invoke. If this value is null
, no arguments are passed.
cancellationToken CancellationToken
The cancellation token for the asynchronous operation.
The Task
representing the asynchronous operation.
ArgumentException
Thrown if moduleStream
is null
.
ConnectionException
Thrown if unable to connect to NodeJS.
InvocationException
Thrown if the invocation request times out.
InvocationException
Thrown if a NodeJS error occurs.
ObjectDisposedException
Thrown if this instance is disposed or if it attempts to use a disposed dependency.
OperationCanceledException
Thrown if cancellationToken
is cancelled.
If cacheIdentifier
is null
, sends the stream to NodeJS where it's compiled for one-time use.
If cacheIdentifier
isn't null
, sends both the stream and cacheIdentifier
to NodeJS. NodeJS reuses the module if it's already cached. Otherwise, it compiles and caches the module.
Once the module is cached, you may use INodeJSService.TryInvokeFromCacheAsync<T>
to invoke directly from the cache, avoiding the overhead of sending the module stream.
Invokes a function from a NodeJS module in stream form.
Task<T?> InvokeFromStreamAsync<T>(Func<Stream> moduleFactory, string cacheIdentifier, [string? exportName = null], [object?[]? args = null], [CancellationToken cancellationToken = default(CancellationToken)])
T
The type of value returned. This may be a JSON-serializable type, string
, or Stream
.
moduleFactory Func<Stream>
The factory that creates the module stream. This value must not be null
and it must not return null
.
cacheIdentifier string
The module's cache identifier. This value must not be null
.
exportName string
The name of the function in module.exports
to invoke. If this value is null
, module.exports
is assumed to be a function and is invoked.
args object[]
The sequence of JSON-serializable arguments to pass to the function to invoke. If this value is null
, no arguments are passed.
cancellationToken CancellationToken
The cancellation token for the asynchronous operation.
The Task
representing the asynchronous operation.
ArgumentNullException
Thrown if module is not cached but moduleFactory
is null
.
ArgumentNullException
Thrown if cacheIdentifier
is null
.
ArgumentException
Thrown if moduleFactory
returns null
.
ConnectionException
Thrown if unable to connect to NodeJS.
InvocationException
Thrown if the invocation request times out.
InvocationException
Thrown if a NodeJS error occurs.
ObjectDisposedException
Thrown if this instance is disposed or if it attempts to use a disposed dependency.
OperationCanceledException
Thrown if cancellationToken
is cancelled.
Initially, sends only cacheIdentifier
to NodeJS. NodeJS reuses the module if it's already cached. Otherwise, it informs the .NET process that the module isn't cached.
The .NET process then creates the module stream using moduleFactory
and send it to NodeJS where it's compiled, invoked and cached.
If exportName
is null
, module.exports
is assumed to be a function and is invoked. Otherwise, invokes the function named exportName
in module.exports
.
Invokes a function from a NodeJS module in stream form.
Task InvokeFromStreamAsync(Func<Stream> moduleFactory, string cacheIdentifier, [string? exportName = null], [object?[]? args = null], [CancellationToken cancellationToken = default(CancellationToken)])
moduleFactory Func<Stream>
The factory that creates the module stream. This value must not be null
and it must not return null
.
cacheIdentifier string
The module's cache identifier. This value must not be null
.
exportName string
The name of the function in module.exports
to invoke. If this value is null
, module.exports
is assumed to be a function and is invoked.
args object[]
The sequence of JSON-serializable arguments to pass to the function to invoke. If this value is null
, no arguments are passed.
cancellationToken CancellationToken
The cancellation token for the asynchronous operation.
The Task
representing the asynchronous operation.
ArgumentNullException
Thrown if module is not cached but moduleFactory
is null
.
ArgumentNullException
Thrown if cacheIdentifier
is null
.
ArgumentException
Thrown if moduleFactory
returns null
.
ConnectionException
Thrown if unable to connect to NodeJS.
InvocationException
Thrown if the invocation request times out.
InvocationException
Thrown if a NodeJS error occurs.
ObjectDisposedException
Thrown if this instance is disposed or if it attempts to use a disposed dependency.
OperationCanceledException
Thrown if cancellationToken
is cancelled.
Initially, sends only cacheIdentifier
to NodeJS. NodeJS reuses the module if it's already cached. Otherwise, it informs the .NET process that the module isn't cached.
The .NET process then creates the module stream using moduleFactory
and send it to NodeJS where it's compiled, invoked and cached.
If exportName
is null
, module.exports
is assumed to be a function and is invoked. Otherwise, invokes the function named exportName
in module.exports
.
Attempts to invoke a function from a module in NodeJS's cache.
Task<(bool, T?)> TryInvokeFromCacheAsync<T>(string cacheIdentifier, [string? exportName = null], [object?[]? args = null], [CancellationToken cancellationToken = default(CancellationToken)])
T
The type of value returned. This may be a JSON-serializable type, string
, or Stream
.
cacheIdentifier string
The module's cache identifier. This value must not be null
.
exportName string
The name of the function in module.exports
to invoke. If this value is null
, module.exports
is assumed to be a function and is invoked.
args object[]
The sequence of JSON-serializable arguments to pass to the function to invoke. If this value is null
, no arguments are passed.
cancellationToken CancellationToken
The cancellation token for the asynchronous operation.
The Task
representing the asynchronous operation. On completion, the task returns a (bool, T) with the bool set to true on
success and false otherwise.
ArgumentNullException
Thrown if cacheIdentifier
is null
.
ConnectionException
Thrown if unable to connect to NodeJS.
InvocationException
Thrown if the invocation request times out.
InvocationException
Thrown if a NodeJS error occurs.
ObjectDisposedException
Thrown if this instance is disposed or if it attempts to use a disposed dependency.
OperationCanceledException
Thrown if cancellationToken
is cancelled.
Using the class Result
:
public class Result
{
public string? Message { get; set; }
}
The following assertion will pass:
// Cache the module
string cacheIdentifier = "exampleModule";
await nodeJSService.InvokeFromStringAsync<Result>("module.exports = (callback, message) => callback(null, { resultMessage: message });",
cacheIdentifier,
args: new[] { "success" });
// Invoke from cache
(bool success, Result? result) = await nodeJSService.TryInvokeFromCacheAsync<Result>(cacheIdentifier, args: new[] { "success" });
Assert.True(success);
Assert.Equal("success", result?.Message);
Attempts to invoke a function from a module in NodeJS's cache.
Task<bool> TryInvokeFromCacheAsync(string cacheIdentifier, [string? exportName = null], [object?[]? args = null], [CancellationToken cancellationToken = default(CancellationToken)])
cacheIdentifier string
The module's cache identifier. This value must not be null
.
exportName string
The name of the function in module.exports
to invoke. If this value is null
, module.exports
is assumed to be a function and is invoked.
args object[]
The sequence of JSON-serializable arguments to pass to the function to invoke. If this value is null
, no arguments are passed.
cancellationToken CancellationToken
The cancellation token for the asynchronous operation.
The Task
representing the asynchronous operation. On completion, the task returns true on success and false otherwise.
ArgumentNullException
Thrown if cacheIdentifier
is null
.
ConnectionException
Thrown if unable to connect to NodeJS.
InvocationException
Thrown if the invocation request times out.
InvocationException
Thrown if a NodeJS error occurs.
ObjectDisposedException
Thrown if this instance is disposed or if it attempts to use a disposed dependency.
OperationCanceledException
Thrown if cancellationToken
is cancelled.
Moves subsequent invocations to a new NodeJS process.
ValueTask MoveToNewProcessAsync()
The ValueTask
representing the asynchronous operation.
This method exposes the system used by file watching (see OutOfProcessNodeJSServiceOptions.EnableFileWatching
) and process retries
(see OutOfProcessNodeJSServiceOptions.NumProcessRetries
) to move to new processes.
When is access to this system useful? Consider the situation where your application uses file watching. If your application knows when files change (e.g. your application is the actor changing files) you can manually invoke this method instead of using file watching. This enables you to avoid the overhead of file watching.
You do not need to await this method. Subsequent invocations are wait asynchronously until the new process is ready.
The method respects OutOfProcessNodeJSServiceOptions.GracefulProcessShutdown
.
public NodeJSProcessOptions()
The base path for resolving NodeJS module paths.
public string ProjectPath { get; set; }
If this value is null
, whitespace or an empty string and the application is an ASP.NET Core application,
project path is IHostingEnvironment.ContentRootPath
.
The value used to locate the NodeJS executable.
public string? ExecutablePath { get; set; }
This value may be an absolute path, a relative path, or a file name.
If this value is a relative path, the executable's path is resolved relative to Directory.GetCurrentDirectory
.
If this value is a file name, the executable's path is resolved using the path environment variable.
If this value is null
, whitespace or an empty string, it is overridden with the file name "node".
Defaults to null
.
NodeJS and V8 options in the form <NodeJS options> <V8 options>.
public string? NodeAndV8Options { get; set; }
You can find the full list of NodeJS options here.
The NodeJS server will listen on this port.
public int Port { get; set; }
If this value is 0, the OS will choose the port.
Defaults to 0.
The NodeJS process's environment variables.
public IDictionary<string, string> EnvironmentVariables { get; set; }
You can configure NodeJS by specifying environment variables for it. Find the full list of environment variables here.
If this value doesn't contain an element with key "NODE_ENV" and the application is an ASP.NET Core application,
an element with key "NODE_ENV" is added. The added element's value is "development" if IHostingEnvironment.EnvironmentName
is EnvironmentName.Development
,
and "production" otherwise.
public OutOfProcessNodeJSServiceOptions()
The maximum duration to wait for the NodeJS process to connect.
public int ConnectionTimeoutMS { get; set; }
If this value is negative, the maximum duration is infinite.
Defaults to 5000
.
The maximum duration to wait for responses to invocations.
public int InvocationTimeoutMS { get; set; }
If this value is negative, the maximum duration is infinite.
Defaults to 100,000
.
The number of times a NodeJS process retries an invocation.
public int NumRetries { get; set; }
If this value is negative, invocations are retried indefinitely.
If an invocation's module source is an unseekable stream, the invocation is not retried.
If you require retries for such streams, copy their contents to a MemoryStream
.
Defaults to 1.
The number of NodeJS processes created to retry an invocation.
public int NumProcessRetries { get; set; }
A NodeJS process retries invocations OutOfProcessNodeJSServiceOptions.NumRetries
times. Once a process's retries are exhausted,
if any retry-processes remain, the library creates a new process and retries invocations OutOfProcessNodeJSServiceOptions.NumRetries
times.
For example, consider the situation where OutOfProcessNodeJSServiceOptions.NumRetries
and this value are both 1. The existing process first attempts the invocation.
If it fails, it retries the invocation once. If it fails again, the library creates a new process that retries the invocation once. In total, the library
attempts the invocation 3 times.
If this value is negative, the library creates new NodeJS processes indefinitely.
If this value is larger than 0 and OutOfProcessNodeJSServiceOptions.NumRetries
is 0, the invocation is retried once in each new process.
By default, process retries are disabled for invocation failures caused by javascript errors. See OutOfProcessNodeJSServiceOptions.EnableProcessRetriesForJavascriptErrors
for more information.
If the module source of an invocation is an unseekable stream, the invocation is not retried.
If you require retries for such streams, copy their contents to a MemoryStream
.
Defaults to 1.
Whether invocation failures caused by Javascript errors are retried in new processes.
public bool EnableProcessRetriesForJavascriptErrors { get; set; }
Process retries were introduced to deal with process-level issues. For example, when a NodeJS process becomes unresponsive the only solution is to start a new process.
If this value is true
, process retries also occur on Javascript errors. If it is false
, they only occur for process-level issues.
Defaults to false
.
Number of times the library retries NodeJS connection attempts.
public int NumConnectionRetries { get; set; }
If this value is negative, connection attempts are retried indefinitely.
Defaults to 2.
The concurrency mode for invocations.
public Concurrency Concurrency { get; set; }
By default, this value is Concurrency.None
. In this mode, a single NodeJS process executes invocations synchronously.
This mode has the benefit of lower memory overhead and it supports all modules. However, it is less performant.
If this value is Concurrency.MultiProcess
, OutOfProcessNodeJSServiceOptions.Concurrency
NodeJS processes are created and invocations are
distributed among them using round robin load balancing. This mode is more performant. However, it has higher memory overhead and doesn't work with modules that
have persistent state.
Defaults to Concurrency.None
.
The concurrency degree.
public int ConcurrencyDegree { get; set; }
If OutOfProcessNodeJSServiceOptions.Concurrency
is Concurrency.MultiProcess
, this value is the number of NodeJS processes.
If this value is less than or equal to 0, concurrency degree is the number of logical processors the current machine has.
This value does nothing if OutOfProcessNodeJSServiceOptions.Concurrency
is Concurrency.None
.
Defaults to 0.
The value specifying whether file watching is enabled.
public bool EnableFileWatching { get; set; }
If file watching is enabled, the library watches files in OutOfProcessNodeJSServiceOptions.WatchPath
with file name matching a pattern in OutOfProcessNodeJSServiceOptions.WatchFileNamePatterns
.
The library restarts NodeJS when a watched file changes.
Works with all OutOfProcessNodeJSServiceOptions.Concurrency
modes.
Defaults to false
.
The directory to watch for file changes.
public string? WatchPath { get; set; }
If this value is null
, the path NodeJSProcessOptions.ProjectPath
is watched.
This value does nothing if OutOfProcessNodeJSServiceOptions.EnableFileWatching
is false
.
Defaults to null
The value specifying whether subdirectories of OutOfProcessNodeJSServiceOptions.WatchPath
are watched.
public bool WatchSubdirectories { get; set; }
This value does nothing if OutOfProcessNodeJSServiceOptions.EnableFileWatching
is false
.
Defaults to true
.
The file name patterns to watch.
public IEnumerable<string> WatchFileNamePatterns { get; set; }
In a pattern, "*" represents 0 or more of any character and "?" represents 0 or 1 of any character. For example, "TestFile1.js" matches the pattern "*File?.js".
This value does nothing if OutOfProcessNodeJSServiceOptions.EnableFileWatching
is false
.
Defaults to ".js", ".jsx", ".ts", ".tsx", ".json" and ".html".
The value specifying whether NodeJS processes shutdown gracefully when moving to a new process.
public bool GracefulProcessShutdown { get; set; }
If this value is true, NodeJS processes shutdown gracefully. Otherwise they're killed immediately.
What's a graceful shutdown? When the library creates a new NodeJS process, the old NodeJS process
might still be handling earlier invocations. If graceful shutdown is enabled, the old NodeJS process is killed after its
invocations complete. If graceful shutdown is disabled, the old NodeJS process is killed immediately and existing
invocations are retried in the new NodeJS process (assuming they have remaining retries, see OutOfProcessNodeJSServiceOptions.NumRetries
).
Should I use graceful shutdown? Shutting down gracefully is safer: chances of an invocation exhausting retries and failing is lower, also, you won't face issues from an invocation terminating midway. However, graceful shutdown does incur a small performance cost. Also, invocations complete using the outdated version of your script. Weigh these factors for your script and use-case to decide whether to use graceful shutdown.
This value does nothing if OutOfProcessNodeJSServiceOptions.EnableFileWatching
is false
and OutOfProcessNodeJSServiceOptions.NumProcessRetries
is 0.
Defaults to true
.
public HttpNodeJSServiceOptions()
The HTTP version to use.
public Version Version { get; set; }
This value can be HttpVersion.Version11
or HttpVersion.Version20
. HttpVersion.Version11
is faster than HttpVersion.Version20
,
but HttpVersion.Version20
may be more stable (unverified).
If this value is not HttpVersion.Version11
or HttpVersion.Version20
, HttpVersion.Version11
is used.
This option is not available for the net461 and netstandard2.0 versions of this library because those framework versions do not support HTTP/2.0.
Defaults to HttpVersion.Version11
.
These benchmarks compare modes offered by this library and Microsoft's INodeServices
.
Inter-process communication latency benchmarks (1 invocation per iteration):
Method | Mean | Error | StdDev | Gen 0 | Gen 1 | Gen 2 | Allocated |
---|---|---|---|---|---|---|---|
INodeJSService_Latency_InvokeFromFile | 105.7 μs | 1.59 μs | 1.48 μs | 1.2207 | - | - | 5.18 KB |
INodeJSService_Latency_InvokeFromFile_GracefulShutdownEnabled | 106.9 μs | 0.54 μs | 0.43 μs | 1.2207 | - | - | 5.4 KB |
INodeJSService_Latency_InvokeFromCache | 103.8 μs | 0.56 μs | 0.53 μs | 1.2207 | - | - | 5.25 KB |
INodeServices_Latency | 117.4 μs | 1.73 μs | 1.54 μs | 2.4414 | - | - | 9.66 KB |
NodeJS v12.18.3
BenchmarkDotNet=v0.12.1, OS=Windows 10.0.19041.985 (2004/?/20H1)
Intel Core i7-7700 CPU 3.60GHz (Kaby Lake), 1 CPU, 8 logical and 4 physical cores
.NET Core SDK=5.0.300-preview.21180.15
[Host] : .NET Core 5.0.6 (CoreCLR 5.0.621.22011, CoreFX 5.0.621.22011), X64 RyuJIT
DefaultJob : .NET Core 5.0.6 (CoreCLR 5.0.621.22011, CoreFX 5.0.621.22011), X64 RyuJIT
View source here.
Asynchronous invocations benchmarks (25 invocations per iteration):
Method | Mean | Error | StdDev | Gen 0 | Gen 1 | Gen 2 | Allocated |
---|---|---|---|---|---|---|---|
INodeJSService_Concurrency_MultiProcess | 400.3 ms | 0.60 ms | 0.47 ms | - | - | - | 120.75 KB |
INodeJSService_Concurrency_None | 2,500.0 ms | 1.66 ms | 1.55 ms | - | - | - | 123.38 KB |
INodeServices_Concurrency | 2,500.3 ms | 0.48 ms | 0.40 ms | - | - | - | 237.77 KB |
NodeJS v12.18.3
BenchmarkDotNet=v0.12.1, OS=Windows 10.0.19041.985 (2004/?/20H1)
Intel Core i7-7700 CPU 3.60GHz (Kaby Lake), 1 CPU, 8 logical and 4 physical cores
.NET Core SDK=5.0.300-preview.21180.15
[Host] : .NET Core 5.0.6 (CoreCLR 5.0.621.22011, CoreFX 5.0.621.22011), X64 RyuJIT
Job-DXCSVX : .NET Core 5.0.6 (CoreCLR 5.0.621.22011, CoreFX 5.0.621.22011), X64 RyuJIT
InvocationCount=1 UnrollFactor=1
View source here.
Real world benchmarks. These use the syntax highlighter, Prism, to highlight C# (25 invocations per iteration):
Method | Mean | Error | StdDev | Median | Gen 0 | Gen 1 | Gen 2 | Allocated |
---|---|---|---|---|---|---|---|---|
INodeJSService_RealWorkload | 2.269 ms | 0.1627 ms | 0.4535 ms | 2.133 ms | - | - | - | 213.17 KB |
INodeServices_RealWorkload | 5.352 ms | 0.3976 ms | 1.1343 ms | 5.252 ms | - | - | - | 270.98 KB |
NodeJS v12.18.3
BenchmarkDotNet=v0.12.1, OS=Windows 10.0.19041.985 (2004/?/20H1)
Intel Core i7-7700 CPU 3.60GHz (Kaby Lake), 1 CPU, 8 logical and 4 physical cores
.NET Core SDK=5.0.300-preview.21180.15
[Host] : .NET Core 5.0.6 (CoreCLR 5.0.621.22011, CoreFX 5.0.621.22011), X64 RyuJIT
Job-DXJFJI : .NET Core 5.0.6 (CoreCLR 5.0.621.22011, CoreFX 5.0.621.22011), X64 RyuJIT
View source here.
How long it takes for NodeJS to restart and begin processing invocations (1 process swap per iteration):
Method | Mean | Error | StdDev | Gen 0 | Gen 1 | Gen 2 | Allocated |
---|---|---|---|---|---|---|---|
HttpNodeJSService_FileWatching_GracefulShutdownEnabled_MoveToNewProcess | 64.96 ms | 0.253 ms | 0.224 ms | - | - | - | 253.43 KB |
HttpNodeJSService_FileWatching_GracefulShutdownDisabled_MoveToNewProcess | 64.99 ms | 0.191 ms | 0.160 ms | - | - | - | 252.95 KB |
NodeJS v12.18.3
BenchmarkDotNet=v0.12.1, OS=Windows 10.0.19041.985 (2004/?/20H1)
Intel Core i7-7700 CPU 3.60GHz (Kaby Lake), 1 CPU, 8 logical and 4 physical cores
.NET Core SDK=5.0.300-preview.21180.15
[Host] : .NET Core 5.0.6 (CoreCLR 5.0.621.22011, CoreFX 5.0.621.22011), X64 RyuJIT
DefaultJob : .NET Core 5.0.6 (CoreCLR 5.0.621.22011, CoreFX 5.0.621.22011), X64 RyuJIT
View source here.
You can build and test this project in Visual Studio 2019/2022.
This project uses source generators. They have a critical limitation - Visual Studio only loads source generator dlls once, at startup.
This means for builds to succeed, you have to:
- Build the solution once (outputs the source generator project dlls)
- Restart Visual Studio
- Rebuild (this should succeed)
Thereafter, if you make changes to the source generator projects, you'll have to build, restart Visual Studio, and rebuild.
Jering.Web.SyntaxHighlighters.HighlightJS - Use the Syntax Highlighter, HighlightJS, from C#.
Jering.Web.SyntaxHighlighters.Prism - Use the Syntax Highlighter, Prism, from C#.
NodeReact.NET - Library to render React library components on the server-side with C# as well as on the client.
NodeJS is a javascript runtime. Essentially, it provides built-in libraries for interfacing with the operating system (OS) and it executes javascript. Built-in ibraries include fs for interfacing with the file system and http for interfacing with with sockets.
Similarities can be drawn to the Core Common Language Runtime (CoreCLR), which provides a set of base libraries and executes .NET Intermediate Language (typically generated by compiling C# or some other .NET language).
Use NodeJS when you're writing javascript that interfaces with the OS. This includes when you use a library, e.g. from npm, that interfaces with the OS.
Under the hood, NodeJS uses V8 to execute javascript. If you logic doesn't interface with the OS, you can use V8 directly through an alternative library.
Javascript modules can seem like a complicated topic, not least because of the existence of competing specifications (CommonJS, AMD, ES6, ...), and the existence of multiple implementations of each specification (SystemJS, RequireJS, Dojo, NodeJS, ...). In reality, javascript modules are simple.
In the following sections, we'll explain the basics of javascript modules. In particular, we'll look at NodeJS modules, a type of javascript module.
The following line is a valid NodeJS module:
// Note that the module variable isn't declared (no "var module = ...")
module.exports = ['chocolate', 'strawberry', 'vanilla'];
Let's imagine that the module above exists in the file C:/NodeJS_Modules_Example/flavours.js.
The following is another valid NodeJS module:
var flavours = require('./flavours.js');
flavours.forEach((flavour) => console.log(flavour));
Let's imagine that it exists in C:/NodeJS_Modules_Example/printer.js:
If we run node printer.js
on the command line, the flavours are printed:
PS C:\NodeJS_Modules_Example> node printer.js
chocolate
strawberry
vanilla
A NodeJS module is simply a block of javascript with module.exports
and/or require
statements. These statements are explained in the next section.
Consider the first module we described above. To load it, NodeJS first wraps it:
// Note how the module object is supplied by the wrapper.
function (exports, require, module, __filename, __dirname) {
module.exports = ['chocolate', 'strawberry', 'vanilla'];
}
Next, NodeJS invokes the generated function, passing a newly created module
object (plain javascript object) to it.
The module sets module.exports
to ['chocolate', 'strawberry', 'vanilla']
and returns.
After the function returns, NodeJS caches the module
object in a simple map, using the module's absolute path, C:/NodeJS_Modules_Example/flavours.js, as cache identifier.
Once the module
object is cached, the module is considered to be loaded.
Consider the second module we described above. To load it, NodeJS first wraps it:
function (exports, require, module, __filename, __dirname) {
// Note how the require function is supplied by the wrapper.
var flavours = require('./flavours.js');
flavours.forEach((flavour) => console.log(flavour));
}
Next, NodeJS invokes the generated function, passing a require
function to it.
require('./flavours.js')
does the following:
- Resolves the path ./flavours.js to C:/NodeJS_Modules_Example/flavours.js.
- Looks for a
module
object with cache identifier C:/NodeJS_Modules_Example/flavours.js in its module cache. - If the flavours.js module is already cached, returns
module.exports
. - Otherwise, loads the flavours.js module and returns
module.exports
.
require('./flavours.js')
eventually returns ['chocolate', 'strawberry', 'vanilla']
. The printer.js module then prints the contents
of the array and returns. Note that the printer.js module receives a module
object but does not set its exports
property.
The module
object is still cached, at which point the printer.js module is considered to be loaded.
To further illustrate caching of module
objects, consider the following example:
var flavours = require('./flavours.js');
flavours.forEach((flavour) => console.log(flavour));
// Clear the array
flavours.length = 0;
// Add three new flavours
flavours.push('apple');
flavours.push('green tea');
flavours.push('sea salt');
// Require the module again, require returns a reference to the same array (module only ever runs once)
flavours = require('./flavours.js');
flavours.forEach((flavour) => console.log(flavour));
Running node printer.js
on the command line prints all of the flavours since require
returns the same array both times:
PS C:\Users\Jeremy\Desktop\JSTest> node entry.js
chocolate
strawberry
vanilla
apple
green tea
sea salt
In summary, NodeJS modules work by creating closures around logic. Why do that? We'll explain in the next section.
To answer this question, let's consider the impetus for the creation of javascript modules in general. Web pages used to include scripts like so:
<html>
...
<script type="text/javascript" src="path/to/coolLibrary.js"></script>
<script type="text/javascript" src="path/to/myScript.js"></script>
...
</html>
Browsers loaded the scripts like so:
// Contents of coolLibrary.js
var somePrivateObject = ...;
var usefulFunction = function() {
...
}
// Contents of myScript.js
var somePrivateObject = ...;
usefulFunction();
Note how the variable somePrivateObject
collides. How can we prevent the collision? We can wrap the scripts in functions:
var module = {};
// This is an immediately invoked function expression, shorthand for assigning the function to a variable then calling it - https://developer.mozilla.org/en-US/docs/Glossary/IIFE
(function(module){
// Contents of coolLibrary.js
var somePrivateObject = ...;
var usefulFunction = function() {
...
}
module.exports = usefulFunction;
})(module)
// Contents of myScript.js
var somePrivateObject = ...;
module.usefulFunction();
We've successfully hidden coolLibrary's somePrivateObject
variable from the global scope using a module-esque pattern.
NodeJS modules exist to serve a similar purpose. By wrapping modules in functions, NodeJS creates a closure for each module so internal details can be kept private.
Contributions are welcome!
Follow @JeringTech for updates and more.