*** We have the following 7 steps in our pipeline:
$ prepare_images
- Load Dataset Images
- Compute Mask
$ compute_sift_keypoints_descriptors
$ image_matching
$ data_feature_matching
- Apply crossCheck BF Matcher
- Apply Ransac on BF Matcher Output
- Loop without repetition using Itertools
$ compute_k_matrix
$ generate_point_cloud
- Recover Pose of reference camera
- Recover rest camera poses using solvePNPRansac
- Apply Triangulation
$ 3D reconstruction
- Use PointsCloud to generate a 3D Object (.stl) file
- snow-man.
- hammer.
- cottage.
- fountain.
(venv) ziadh@Ziads-MacBook-Air production % tree
.
βββ conf
βΒ Β βββ certs
βΒ Β βββ html
βΒ Β βββ kong-config
βΒ Β βΒ Β βββ kong.yaml
βΒ Β βββ logs
βΒ Β βββ nginx.conf
βββ data
βββ docker-compose.yml
βββ src
βββ Dockerfile
βββ main.py
βββ scanmate.py
βββ under_the_hood
βββ __init__.py
βββ compute_sift_features.py
βββ data_feature_match.py
βββ data_structures
βΒ Β βββ __init__.py
βΒ Β βββ feature_matches.py
βΒ Β βββ image.py
βΒ Β βββ images.py
βββ generate_points_cloud.py
βββ image_match.py
βββ prepare_images.py
βββ utils
βββ __init__.py
βββ utils.py
10 directories, 18 files
This project is licensed under the terms of the GNU General Public License version 3.0 (GPLv3). See the LICENSE file for details.