Skip to content

ZheLi2020/InfoDist

Repository files navigation

This repository provides a PyTorch implementation of the paper Image Distillation for Safe Data Sharing in Histopathology accepted at MICCAI 2024.

Tested with:

  • PyTorch 1.13.1
  • Python 3.10.13

Distillation and Training:

  • Dataset is downloaded automatically in code at the first time run (here)

  • Pre-trained classifiers for embedding can be downloaded (here)

  • To distill the small dataset and train classifier on images with size 256, run

    # run with contrastive loss
    python main_bound.py --dataset=medsyn --cluster=embedinfo --contrastive
    
    # run only with ce loss
    python main.py --dataset=medsyn --cluster=embedinfo
    
  • To distill the small dataset and train classifier on images with size 64, run

    # run with contrastive loss
    python main_smallbound.py --dataset=medsyn --cluster=embedinfo --contrastive
    
    # run only with ce loss
    python main_small.py --dataset=medsyn --cluster=embedinfo
    

Citation:

If you use the code, please cite

Zhe Li, Bernhard Kainz.
Image Distillation for Safe Data Sharing in Histopathology.
The International Conference on Medical Image Computing and Computer Assisted Intervention 
(MICCAI), 2024

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages