-
Notifications
You must be signed in to change notification settings - Fork 3
ZhaohuiXue/S3Net
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
% % S3Net: Spectral–Spatial Siamese Network for Few-Shot Hyperspectral Image Classification. % % This demo shows the S3Net model for hyperspectral image classification. % % main.py ....... A main script executing experiments upon IP, PU, and HU data sets. % data_read.py ....... A script implementing various data manipulation functions. % Function.py ....... A script implementing the precision calculation, claasificaiton map drawing, and etc. % model.pyd ....... A script implementing the S3Net model. % loss_function.py ....... A script implementing some loss functions. % Final_Experiment.csv ...... A csv saving the accuracy information after training % % /Dataset ............... The folder including data sets, we put in Salinas in it. % /model_results ............... The folder containing the model parameters after training. % % -------------------------------------- % Note: Required core python libraries % -------------------------------------- % 1. python 3.7 % 2. pytorch 1.7.1 % 3. torchvision 0.8.2 % -------------------------------------- % Cite: % -------------------------------------- % % [1] Z. Xue, Y. Zhou and P. Du, "S3Net: Spectral-Spatial Siamese Network for Few-Shot Hyperspectral Image Classification," in IEEE Transactions on Geoscience and Remote Sensing, 2022, doi: 10.1109/TGRS.2022.3181501. % -------------------------------------- % Copyright & Disclaimer % -------------------------------------- % % The programs contained in this package are granted free of charge for % research and education purposes only. % % Copyright (c) 2021 by Zhaohui Xue & Yiyang Zhou % zhaohui.xue@hhu.edu.cn & hohai_zyy@163.com % -------------------------------------- % For full package: % -------------------------------------- % https://sites.google.com/site/zhaohuixuers/
About
A DEMO for "S3Net: Spectral-Spatial Siamese Network for Few-Shot Hyperspectral Image Classification" (Xue et al., TGRS, 2022)
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published