forked from MehdiHmidi523/DeepRL-Navigation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
292 lines (237 loc) · 10.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import os
import cv2
import numpy as np
from utils import SparseDepth
from vision import Vision
from agentKinematics import RoboticAssistant
class IndoorDeepRL:
#训练环境
def __init__(self, map_path="complex.png"):
#训练环境初始化
self.terra = cv2.flip(cv2.imread(map_path), 0) #加载图片,读取到terra中
#二值化图片
self.terra[self.terra > 128] = 255
self.terra[self.terra <= 128] = 0
#图片归一化
self.m = np.asarray(self.terra)
self.m = cv2.cvtColor(self.m, cv2.COLOR_RGB2GRAY)
self.m = self.m.astype(float) / 255.
self.terra = self.terra.astype(float) / 255.
self.lmodel = Vision(self.m) #实例化激光雷达
def createInstance(self):
#创建智能体(机器人)agent
self.robot = RoboticAssistant(d=5, wu=9, wv=4, car_w=9, car_f=7, car_r=10, dt=0.1)
#随机设置机器人的开始坐标和朝向
self.robot.x, self.robot.y = self.random_start_travesable()
self.robot.theta = 360 * np.random.random()
self.pos = (self.robot.x, self.robot.y, self.robot.theta) #将机器人的坐标与朝向保存到pos参数中
#随机设置终点坐标
self.target = self.random_start_travesable()
#计算距离和方向差
self.target_euclidian = np.sqrt((self.robot.x - self.target[0]) ** 2 + (self.robot.y - self.target[1]) ** 2)
target_angle = np.arctan2(self.target[1] - self.robot.y, self.target[0] - self.robot.x) - np.deg2rad(self.robot.theta)
target_distance = [self.target_euclidian * np.cos(target_angle), self.target_euclidian * np.sin(target_angle)]
self.sdata, self.plist = self.lmodel.measure_depth(self.pos)
state = self.existance(self.sdata, target_distance)
return state
def step(self, action):
#步进程序
#速度进行限幅
self.robot.control((action[0] + 1) / 2 * self.robot.v_interval, action[1] * self.robot.w_interval)
#计算下一点位置
self.robot.update()
#计算四个边界点的坐标
e1,e2,e3,e4 = self.robot.dimensions
#查看四个边界点距离障碍物的距离,判断机器人是否撞上障碍物
ee1 = SparseDepth(e1[0], e2[0], e1[1], e2[1])
ee2 = SparseDepth(e1[0], e3[0], e1[1], e3[1])
ee3 = SparseDepth(e3[0], e4[0], e3[1], e4[1])
ee4 = SparseDepth(e4[0], e2[0], e4[1], e2[1])
check = ee1+ee2+ee3+ee4 #将障碍物信息合成一个list
#检查是否相撞
collision = False
for points in check:
if self.m[int(points[1]),int(points[0])]<0.5:
collision = True
self.robot.redo()
self.robot.velocity = -0.5 * self.robot.velocity
break
self.pos = (self.robot.x, self.robot.y, self.robot.theta) #更新当前机器人的坐标
self.sdata, self.plist = self.lmodel.measure_depth(self.pos) #获取激光雷达的距离信息和终点坐标
action_r = 0.05 if action[0] < -0.5 else 0 #奖励函数设置,然机器人运动的幅度大一点。
curr_target_dist = np.sqrt((self.robot.x - self.target[0]) ** 2 + (self.robot.y - self.target[1]) ** 2)
distance_reward = self.target_euclidian - curr_target_dist
s_orien = np.rad2deg(np.arctan2(self.target[1] - self.robot.y, self.target[0] - self.robot.x))
orientation_error = (s_orien - self.robot.theta) % 360
if orientation_error > 180:
orientation_error = 360 - orientation_error
orientation_reward = np.deg2rad(orientation_error)
reward = distance_reward - orientation_reward - 0.6 * action_r
terminated = False
if curr_target_dist < 20:
reward = 20
terminated = True
if collision:
reward = -15
terminated = True
self.target_euclidian = curr_target_dist
target_angle = np.arctan2(self.target[1] - self.robot.y, self.target[0] - self.robot.x) - np.deg2rad(self.robot.theta)
target_distance = [self.target_euclidian * np.cos(target_angle), self.target_euclidian * np.sin(target_angle)]
state_next = self.existance(self.sdata, target_distance)
return state_next, reward, terminated
def render(self, gui=True):
experiment_space = self.terra.copy()
for pts in self.plist:
cv2.line(
experiment_space,
(int(1*self.pos[0]), int(1*self.pos[1])),
(int(1*pts[0]), int(1*pts[1])),
(0.0,1.0,0.0), 1)
cv2.circle(experiment_space, (int(1*self.target[0]), int(1*self.target[1])), 10, (1.0,0.5,0.7), 3)
experiment_space = self.robot.render(experiment_space)
experiment_space = cv2.flip(experiment_space,0)
if gui:
cv2.imshow("Mapless Navigation",experiment_space)
k = cv2.waitKey(1)
return experiment_space.copy()
def random_start_travesable(self):
height, width = self.m.shape[0], self.m.shape[1]
tx = np.random.randint(0,width)
ty = np.random.randint(0,height)
kernel = np.ones((10,10),np.uint8)
m_dilate = 1-cv2.dilate(1-self.m, kernel, iterations=3)
while(m_dilate[ty, tx] < 0.5):
tx = np.random.randint(0,width)
ty = np.random.randint(0,height)
return tx, ty
def existance(self, sensor, target):
si = [s/200 for s in sensor]
ti = [t/500 for t in target]
return si + ti
training = True
render = True
load_model = False
terrain = "map.png"
gif_path = "performance/"
model_path = "models/"
if not os.path.exists(model_path):
os.makedirs(model_path)
from PIL import Image
def performance_measure(episode, agent, s_count, max_rate):
if episode>0 and episode%50==0:
s_rate = s_count / 50
if s_rate >= max_rate:
max_rate = s_rate
if training:
print("Save model to " + model_path)
agent.save_load_model("save", model_path)
print("Success Rate (current/max):", s_rate, "/", max_rate)
return max_rate
def visualize(agent, total_eps=2, message=False, render=False, map_path="large.png", gif_path="performance/", gif_name="test.gif"):
if not os.path.exists(gif_path):
os.makedirs(gif_path)
images = []
mother_nature = IndoorDeepRL(map_path=terrain)
for eps in range(total_eps):
step = 0
max_success_rate = 0
success_count = 0
state = mother_nature.createInstance()
r_eps = []
acc_reward = 0.
while(True):
action = agent.choose_action(state, eval=True)
state_next, reward, terminated = mother_nature.step(action)
displayed = mother_nature.render(gui=render)
# 保存gif文件,此处注释掉加快运行速度
# im_pil = Image.fromarray(cv2.cvtColor(np.uint8(displayed*255),cv2.COLOR_BGR2RGB))
# images.append(im_pil)
r_eps.append(reward)
acc_reward += reward
if message:
print('\rEps: {:2d}| Step: {:4d} | action:{:+.2f}| R:{:+.2f}| Reps:{:.2f} '\
.format(eps, step, action[0], reward, acc_reward), end='')
state = state_next.copy()
step += 1
if terminated or step>200:
if message:
print()
break
# 保存gif文件,此处注释掉加快运行速度
# print("Create GIF ...")
# if gif_path is not None:
# images[0].save(gif_path+gif_name, save_all=True, append_images=images[1:], optimize=True, duration=40, loop=0)
import torch
import torch.nn as nn
import torch.nn.functional as F
import ddpg
batch_size = 64
LOG_SIG_MAX = 2
LOG_SIG_MIN = -20
epsilon = 1e-6
class PolicyNet(nn.Module):
def __init__(self):
super(PolicyNet, self).__init__()
self.layer1 = nn.Linear(23, 512)
self.layer2 = nn.Linear(512, 512)
self.layer3 = nn.Linear(512, 512)
self.layer4 = nn.Linear(512, 2)
def forward(self, s):
hidden_layer_1 = F.relu(self.layer1(s))
hidden_layer_2 = F.relu(self.layer2(hidden_layer_1))
hidden_layer_3 = F.relu(self.layer3(hidden_layer_2))
return torch.tanh(self.layer4(hidden_layer_3)) # one mu
class QNet(nn.Module):
def __init__(self):
super(QNet, self).__init__()
self.layer1 = nn.Linear(23, 512)
self.layer2 = nn.Linear(512+2, 512)
self.layer3 = nn.Linear(512, 512)
self.layer4 = nn.Linear(512, 1)
def forward(self, s, a):
hidden_layer_1 = F.relu(self.layer1(s))
hidden_layer_1_a = torch.cat((hidden_layer_1, a), 1)
hidden_layer_2 = F.relu(self.layer2(hidden_layer_1_a))
hidden_layer_3 = F.relu(self.layer3(hidden_layer_2))
return self.layer4(hidden_layer_3)
agent_mind_ddpg = ddpg.DDPG(base_net = [PolicyNet, QNet], b_size = batch_size)
if load_model:
print("Load model ...", model_path)
agent_mind_ddpg.save_load_model("load", model_path)
mother_nature = IndoorDeepRL(map_path=terrain)
total_steps = 0
max_success_rate = 0
success_count = 0
print("eps, step, total_steps, action[0], reward, loss_a, loss_c, agent_mind_ddpg.epsilon, acc_reward/step")
for eps in range(4500):
state = mother_nature.createInstance()
step = 0
loss_a = loss_c = 0.
acc_reward = 0.
while True:
if training:
action = agent_mind_ddpg.choose_action(state, eval=False)
else:
action = agent_mind_ddpg.choose_action(state, eval=True)
state_next, reward, terminated = mother_nature.step(action)
end = 0 if terminated else 1
agent_mind_ddpg.store_transition(state, action, reward, state_next, end)
displayed = mother_nature.render(gui=render)
loss_a = loss_c = 0.
if total_steps > batch_size and training:
loss_a, loss_c = agent_mind_ddpg.learn()
step += 1
total_steps += 1
acc_reward += reward
print('\r{:3d} ; {:4d}; {:6d}; {:+.2f}; {:+.2f}; {:+.2f}; {:+.2f}; {:.3f}; {:.2f}'
.format(eps, step, total_steps, action[0], reward, loss_a, loss_c, agent_mind_ddpg._e, acc_reward/step), end='')
state = state_next.copy()
if terminated or step>200:
if reward > 5:
success_count += 1
print()
break
max_success_rate = performance_measure(eps, agent_mind_ddpg, success_count, max_success_rate)
print(max_success_rate)
success_count = 0
visualize(agent_mind_ddpg, total_eps=8, map_path=terrain, gif_path=gif_path, gif_name="DDPG_"+str(eps).zfill(4)+".gif")