-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
45 lines (34 loc) · 1.58 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch_geometric.transforms as T
from torch import default_generator
from torch.utils.data import random_split
from torch_geometric.datasets import TUDataset
from torch_geometric.loader import DataLoader
def get_dataloader(dataset, batch_size, data_split_ratio, seed=3407):
"""
Args:
dataset: which dataset you want
batch_size: int
data_split_ratio: list [train, valid, test]
seed: random seed to split the dataset randomly
Returns:
a dictionary of training, validation, and testing dataLoader
"""
num_train = int(data_split_ratio[0] * len(dataset))
num_eval = int(data_split_ratio[1] * len(dataset))
num_test = len(dataset) - num_train - num_eval
train, eval, test = random_split(dataset,
lengths=[num_train, num_eval, num_test],
generator=default_generator.manual_seed(seed))
dataloader = dict()
dataloader['train'] = DataLoader(train, batch_size=batch_size, shuffle=True)
dataloader['eval'] = DataLoader(eval, batch_size=batch_size, shuffle=True)
dataloader['test'] = DataLoader(test, batch_size=batch_size, shuffle=True)
return dataloader
def get_dataset(dataset_root, dataset_name):
if dataset_name.lower() in ['mutagenicity', 'enzymes']:
return TUDataset(dataset_root, dataset_name)
elif dataset_name.lower() in ['reddit-binary']:
transform = T.Constant(value=1.0)
return TUDataset(dataset_root, dataset_name, transform=transform)
else:
raise ValueError(f"{dataset_name} is not defined.")