Skip to content

Python codes to implement the PFGE algorithm

Notifications You must be signed in to change notification settings

ZJLAB-AMMI/PFGE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PFGE

This repository contains a PyTorch implementation of the Parsimonious Fast Geometric Ensembling (PFGE) procedures from the paper

PFGE: Parsimonious Fast Geometric Ensembling of DNNs arXiv preprint arXiv:2202.06658

by Hao Guo, Jiyong Jin and Bin Liu.

Usage

The code in this repository implements the Parsimonious Fast Geometric Ensembling (PFGE) algorithm, with examples on the CIFAR10 and CIFAR100 datasets.

Model Training

You can train model using the following command

python3 train.py --dir=<DIR> --dataset=<Dataset> --data_path=<path> --model=<Model> --epochs=<Epochs> --lr_init=<lr> \
                 --wd=<Wd> 

Parameters:
DIR — path to training directory where checkpoints will be stored
Dataset — dataset name (default: CIFAR10)
path — path to the data directory
Model — DNN model name: VGG16, PreResNet164 and WideResNet28x10
Epochs — number of training epochs
lr — initial learning rate
Wd — weight decay

Parsimonious Fast Geometric Ensembling (PFGE)

In order to run PFGE you need to pre-train the network to initialize the procedure. Then, you can run PFGE with the following command

python3 pfge.py --dir=<DIR> --dataset=<Dataset> --data_path=<path> --model=<Model> --epochs=<Epochs> --lr_init=<lr> \
                --wd=<Wd> --ckpt=<CKPT> --lr_max=<lr1> --lr_min=<lr2> --cycle=<Cycle> --P=<P>  

Parameters:
CKPT — path to the checkpoint saved by train.py
lr1 — maximum learning rates in the cycle
lr2 — minimum learning rates in the cycle
cycle — cycle length in epochs
P — model recording period(default:10)

Releases

No releases published

Packages

No packages published

Languages