ResNeXt-TF2
WideResNet(WRN)-TF2
ResNet-with-LRWarmUp-TF2
ResNet-with-SGDR-TF2
Indicator | Value |
---|---|
Accuracy | 0.99200 |
Precision | 0.99197 |
Recall | 0.99188 |
F1-Score | 0.99191 |
Confusion Matrix
[[ 977 0 1 0 0 0 1 1 0 0]
[ 1 1131 0 0 0 1 1 1 0 0]
[ 0 1 1024 0 1 0 0 5 1 0]
[ 0 0 1 1006 0 3 0 0 0 0]
[ 0 0 1 0 974 0 2 0 0 5]
[ 1 0 0 6 0 883 1 0 0 1]
[ 4 3 0 1 1 3 946 0 0 0]
[ 0 1 3 0 0 0 0 1023 0 1]
[ 3 0 2 1 0 2 0 1 959 6]
[ 2 1 0 1 2 3 0 3 0 997]]
Class-0 | Precision: 0.98887, Recall: 0.99694, F1-Score: 0.99289
Class-1 | Precision: 0.99472, Recall: 0.99648, F1-Score: 0.99560
Class-2 | Precision: 0.99225, Recall: 0.99225, F1-Score: 0.99225
Class-3 | Precision: 0.99113, Recall: 0.99604, F1-Score: 0.99358
Class-4 | Precision: 0.99591, Recall: 0.99185, F1-Score: 0.99388
Class-5 | Precision: 0.98659, Recall: 0.98991, F1-Score: 0.98825
Class-6 | Precision: 0.99474, Recall: 0.98747, F1-Score: 0.99109
Class-7 | Precision: 0.98936, Recall: 0.99514, F1-Score: 0.99224
Class-8 | Precision: 0.99896, Recall: 0.98460, F1-Score: 0.99173
Class-9 | Precision: 0.98713, Recall: 0.98811, F1-Score: 0.98762
Total | Accuracy: 0.99200, Precision: 0.99197, Recall: 0.99188, F1-Score: 0.99191
- Python 3.7.6
- Tensorflow 2.1.0
- Numpy 1.18.1
- Matplotlib 3.1.3
[1] Kaiming He et al. (2015). Deep Residual Learning for Image Recognition. arXiv preprint arXiv:1512.03385.