Skip to content
forked from xmhk/FNFTpy

A python wrapper for FNFT, a C library to calculate the Nonlinear Fourier Transform

License

Notifications You must be signed in to change notification settings

Yarden92/myFNFTpy

 
 

Repository files navigation

FNFTpy - a wrapper for FNFT

This module provides a python interface (wrapper functions) for FNFT, a library for the numerical computation of nonlinear Fourier transforms.

For FNFTpy to work, a copy of FNFT has to be installed. For general information, source files and installation of FNFT, visit FNFT's github page: https://github.com/FastNFT

current state - access functions from FNFT version 0.4.0

for changes and latest updates see Changelog

Korteweg-de-Fries equation with vanishing boundary conditions:

  • Currently, the continuous spectrum can be calculated.

  • Function kdvv:

    • easy-to-use Python function, options can be passed as optional arguments
    • minimal example:
      import numpy as np
      from FNFTpy import kdvv
      print("\n\nkdvv example")
      
      # set values
      D = 256
      tvec = np.linspace(-1, 1, D)
      q = np.zeros(D, dtype=np.complex128)
      q[:] = 2.0 + 0.0j
      Xi1 = -2
      Xi2 = 2
      M = 8
      Xivec = np.linspace(Xi1, Xi2, M)
      
      # call function
      res = kdvv(q, tvec, M, Xi1=Xi1, Xi2=Xi2)
      
      # print results
      print("\n----- options used ----")
      print(res['options'])
      print("\n------ results --------")
      print("FNFT return value: %d (should be 0)" % res['return_value'])
      print("continuous spectrum: ")
      for i in range(len(res['cont'])):
          print("%d : Xi=%.4f   %.6f  %.6fj" % (i, Xivec[i],
                np.real(res['cont'][i]), np.imag(res['cont'][i])))
      
    • for full description call help(kdvv)
  • function kdvv_wrapper:

    • mimics the function fnft_kdvv from FNFT.
    • for full description call help(kdvv_wrapper)

Nonlinear Schroedinger Equation with periodic boundary conditions

  • The main and auxiliary spectra can be calculated.
  • Function nsep:
    • easy-to-use Python function, options can be passed as optional arguments
    • minimal example:
      import numpy as np
      from FNFTpy import nsep
      print("\n\nnsep example")
      # set values
      D = 257
      tvec = np.linspace(0, 2*np.pi, D)
      q = np.exp(2.0j * tvec)
      # call function
      res = nsep(q, 0, 2 * np.pi, bb=[-2, 2, -2, 2], filt=1, kappa=1)
      # print results
      print("\n----- options used ----")
      print(res['options'])
      print("\n------ results --------")
      print("FNFT return value: %d (should be 0)" % res['return_value'])
      print("number of samples: %d" % D)
      print('main spectrum')
      for i in range(res['K']):
          print("%d :  %.6f  %.6fj" % (i, np.real(res['main'][i]),
                                            np.imag(res['main'][i])))
      print('auxiliary spectrum')
      for i in range(res['M']):
          print("%d :  %.6f  %.6fj" % (i, np.real(res['aux'][i]),
                                            np.imag(res['aux'][i])))
      
      
  • for full description call help(nsep)
  • Function nsep_wrapper:
    • mimics the function fnft_nsep from FNFT.
    • for full description call help(nsep_wrapper)

Nonlinear Schroedinger Equation with vanishing boundary conditions:

  • The discrete and continuous spectra can be calculated.

  • Function nsev:

    • easy-to-use Python function, options can be passed as optional arguments

    • minimal example:

      import numpy as np
      from FNFTpy import nsev
      
      # set values
      D = 256
      tvec = np.linspace(-1, 1, D)
      q = np.zeros(len(tvec), dtype=np.complex128)
      q[:] = 2.0 + 0.0j
      M = 8
      Xi1 = -2
      Xi2 = 2
      Xivec = np.linspace(Xi1, Xi2, M)
      
      # call function
      res = nsev(q, tvec, M=M, Xi1=Xi1, Xi2=Xi2)
      
      # print results
      print("\n----- options used ----")
      print(res['options'])
      print("\n------ results --------")
      
      print("FNFT return value: %d (should be 0)" % res['return_value'])
      print("continuous spectrum")
      for i in range(len(res['cont_ref'])):
          print("%d :  Xi = %.4f   %.6f  %.6fj" % (i, Xivec[i], np.real(res['cont_ref'][i]), np.imag(res['cont_ref'][i])))
      print("discrete spectrum")
      for i in range(len(res['bound_states'])):
          print("%d : %.6f  %.6fj with norming const %.6f  %.6fj" % (i, np.real(res['bound_states'][i]),
                                                                   np.imag(res['bound_states'][i]),
                                                                   np.real(res['disc_norm'][i]),
                                                                   np.imag(res['disc_norm'][i])))
      
    • for full description call help(nsev)

  • Function nsev_wrapper:

    • mimics the function fnft_nsev from FNFT.
    • for full description call help(nsev_wrapper)

Nonlinear Schroedinger Equation with vanishing boundary conditions (Inverse Transformation):

  • Perform the Inverse Nonlinear Fourier transform: the temporal field is calculated from the nonlinear spectrum.

  • the continuous part and (optional) the discrete part of the spectrum can be given.

  • function nsev_inverse

    • easy-to-use Python function, options can be passed as optional arguments
    • minimal example:
      from FNFTpy import nsev_inverse, nsev_inverse_xi_wrapper
      import numpy as np
      
      D = 1024
      M = 2*D
      Tmax = 15
      tvec = np.linspace(-Tmax, Tmax, D)
      # calculate suitable frequency bonds (xi)
      rv, xi = nsev_inverse_xi_wrapper(D, tvec[0], tvec[-1], M)
      xivec = xi[0] + np.arange(M) * (xi[1] - xi[0]) / (M - 1)
      
      # analytic field: chirp-free N=2.2 Satsuma-Yajima pulse
      q = 2.2 / np.cosh(tvec)
      
      # semi-analytic nonlinear spectrum
      bound_states = np.array([0.7j, 1.7j])
      disc_norming_const_ana = [1.0, -1.0]
      cont_b_ana = 0.587783 / np.cosh(xivec * np.pi) * np.exp(1.0j * np.pi)
      
      # call the function
      res = nsev_inverse(xivec, tvec, cont_b_ana, bound_states, disc_norming_const_ana, cst=1, dst=0)
      
      # compare result to analytic function
      print("\n\nnsev-inverse example: Satsuma-Yajima N=2.2")
      print("Difference analytic - numeric: sum((q_ana-q_num)**2) = %.2e  (should be approx 0) "%np.sum(np.abs(q-res['q'])**2))        
      
  • Function nsev_inverse_wrapper:

    • mimics the function fnft_nsev_inverse from FNFT.
    • for full description call help(nsev_inverse_wrapper)

Requirements

  • Python 3
  • additional Python module: NumPy (python-numpy)

Setup

  • you may install FNFTpy locally using pip: From within the project root folder run

    pip install .     # Install system wide
    pip install -e .  # Install in editable/development mode
    
  • alternatively, you may add the FNFTpy folder to your Python path.

  • Of course, you need a compiled version of the FNFT C-library. See the documentation for FNFT on how to build the library on your device.

  • FNFTpy needs to know where the C-library is located. This configuration can be done by editing the function get_lib_path() in auxiliary.py.

    Example:

    def get_lib_path():
        """Return the path of the FNFT file.
    
        Here you can set the location of the compiled library for FNFT.
        See example strings below.
    
        Returns:
    
        * libstring : string holding library path
    
        Example paths:
    
            * libstr = "C:/Libraries/local/libfnft.dll"  # example for windows            
            * libstr = "/usr/local/lib/libfnft.so"  # example for linux
    
        """
        libstr = "/usr/local/lib/libfnft.so"  # example for linux
        return libstr        
    

License

FNFTpy is provided under the terms of the GNU General Public License, version 2.

Contact and contribution

  • for bug reports, please use the github issue tracker

  • contributors:

About

A python wrapper for FNFT, a C library to calculate the Nonlinear Fourier Transform

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%