- ogb>=1.3.3
- torch>=1.10.0
- torch-geometric>=2.0.4
GraphSAINT
python saint_graph.py --epochs <epochs> --load_CL <load_CL> --par <par> --rate <rate> -topk <topk>
where <par>
is a contrastive loss ratio. <rate>
is the perturbation ratio of data augmentation.
<topk>
is the number of subgraphs involved in contrastive learning. <load_CL>
is to add contrastive learning at the Nth epoch, default is 0.
Cluster-GCN
python cluster_graph.py --epochs <epochs> --load_CL <load_CL> --par <par> --rate <rate>
GraphSAGE
python ns_graph.py --epochs <epochs> --par <par> --rate <rate>
@inproceedings{wang2022adagcl,
title={AdaGCL: Adaptive Subgraph Contrastive Learning to Generalize Large-scale Graph Training},
author={Wang, Yili and Zhou, Kaixiong and Miao, Rui and Liu, Ninghao and Wang, Xin},
booktitle={Proceedings of the 31st ACM International Conference on Information \& Knowledge Management},
pages={2046--2055},
year={2022}
}