Skip to content

XLearning-SCU/2024-IJCV-LCNL

Repository files navigation

PyTorch implementation for Robust Object Re-identification with Coupled Noisy Labels (IJCV 2024).

LCNL extends the previous work Learning with Twin Noisy Labels for Visible-Infrared Person Re-Identification (CVPR 2022) by generalizing DART to both single- and cross-modality ReID tasks with improved loss function.

Introduction

LCNL framework

Requirements

  • Python 3.7
  • PyTorch ~1.7.1
  • numpy
  • scikit-learn

Datasets

SYSU-MM01 and RegDB

We follow ADP to obtain the datasets.

Market1501, Duke-MTMC and VeRi-776

We follow TransReID to obtain the datasets.

Visible-infrared ReID

Training

Modify the data_path and specify the noise_ratio to train the model.

# SYSU-MM01: noise_ratio = {0, 0.2, 0.5}
python run.py --gpu 0 --dataset sysu --data-path data_path --noise-rate 0. --savename sysu_lcnl_nr0 --op-type weighty

# RegDB: noise_ratio = {0, 0.2, 0.5}, trial = 1-10
python run.py --gpu 0 --dataset regdb --data-path data_path --noise-rate 0. --savename regdb_lcnl_nr0 --trial 1

Evaluation

Modify the data_path and model_path to evaluate the trained model.

# SYSU-MM01: mode = {all, indoor}
python test.py --gpu 0 --dataset sysu --data-path data-path --model_path model_path --resume-net1 'sysu_lcnl_nr0_net1.t' --resume-net2 'sysu_lcnl_nr0_net1.t' --mode all

# RegDB: --tvsearch or not (whether thermal to visible search)
python test.py --gpu 0 --dataset regdb --data-path data-path --model_path model_path --resume-net1 'regdb_lcnl_nr20_trial{}_net1.t' --resume-net2 'regdb_lcnl_nr20_trial{}_net2.t'

Reproduce

We provide the checkpoints (for evaluation) and noise indexes (should be placed on the dataset path for training) for result reproducing.

Todo

  • Release the code for vehicle ReID task.
  • Release the code for visible ReID task.

Citation

If LCNL is useful for your research, please consider citing:

@article{yang2024lcnl,
  title={Robust Object Re-identification with Coupled Noisy Labels},
  author={Yang, Mouxing and Huang, Zhenyu and Peng, Xi},
  journal={International Journal of Computer Vision},
  year={2024},
  publisher={Springer}
}

or the previous conference version:

@InProceedings{Yang_2022_CVPR,
    author={Yang, Mouxing and Huang, Zhenyu and Hu, Peng and Li, Taihao and Lv, Jiancheng and Peng, Xi},
    title={Learning With Twin Noisy Labels for Visible-Infrared Person Re-Identification},
    booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month={June},
    year={2022},
    pages={14308-14317}
}

License

Apache License 2.0

Acknowledgements

The code is based on ADP, TransReID and DART licensed under Apache 2.0.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages