-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalsTrainer_highramversion.py
195 lines (135 loc) · 6.33 KB
/
alsTrainer_highramversion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import csv
import pandas as pd
import numpy as np
from tqdm import tqdm
import pickle
from tqdm import tqdm
def cacheRelationship(userCsv, animeCsv, ratingCsv, chunkSize=100000):
#Assume we do not modify userCsv and animeCsv
#Create User Dictionary
#Create Anime Dictionary
#Write CSV (UserId, AnimeId, Rating)
#Correlate UserName with UserId
userDict = {}
animeDict = {}
userAnimeRelationship = {}
animeUserRelationship = {}
print("Creating userDict")
cntr = 1
dfs = pd.read_csv(userCsv, chunksize=chunkSize)
for df in tqdm(dfs):
df = df.dropna(subset=["username"])
usernames = df["username"].values.tolist()
for userName in usernames:
if userName not in userDict:
userDict[userName] = cntr
cntr += 1
with open("userDict.pckl", "wb") as f:
pickle.dump(userDict, f)
print("Creating animeDict")
cntr = 1
dfs = pd.read_csv(animeCsv, chunksize=chunkSize)
for df in tqdm(dfs):
df = df.dropna(subset=["anime_id"])
animes = df["anime_id"].values.tolist()
for animeId in animes:
if animeId not in animeDict:
animeDict[animeId] = cntr
cntr += 1
with open("animeDict.pckl", "wb") as f:
pickle.dump(animeDict, f)
print("Creating relationships")
dfs = pd.read_csv(ratingCsv, chunksize=chunkSize)
for df in tqdm(dfs):
df = df.dropna(subset=["username","anime_id","my_score"])
ratingValues = df[["username", "anime_id", "my_score"]].values.tolist()
for userName, animeId, score in ratingValues:
if (userName in userDict) and (animeId in animeDict):
uid = userDict[userName]
aid = animeDict[animeId]
if uid not in userAnimeRelationship:
userAnimeRelationship[uid] = [[],[]]
userAnimeRelationship[uid][0].append(aid)
userAnimeRelationship[uid][1].append(score)
if aid not in animeUserRelationship:
animeUserRelationship[aid] = [[],[]]
animeUserRelationship[aid][0].append(uid)
animeUserRelationship[aid][1].append(score)
with open("userAnimeRelationship.pckl", "wb") as f:
pickle.dump(userAnimeRelationship, f)
with open("animeUserRelationship.pckl", "wb") as f:
pickle.dump(animeUserRelationship, f)
return userDict, animeDict, userAnimeRelationship, animeUserRelationship
def vectorTrain(SubMatrix, rating, lambdaReg):
SubMatrix = np.transpose(SubMatrix)
A = np.matmul(SubMatrix, np.transpose(SubMatrix)) + lambdaReg
Ainv = np.linalg.inv(A)
V = np.matmul(SubMatrix, np.transpose(rating))
entVec = np.matmul(Ainv, V)
# print(entVec[0].shape)
return entVec
def ALStrain(iterations, userDict, animeDict, userAnimeRelationship, animeUserRelationship, dims=128, lambdaVal=0.065):
numUsers = len(userDict)
numAnime = len(animeDict)
lambdaReg = np.identity(dims)*lambdaVal
userMatrix = np.zeros((numUsers, dims))
animeMatrix = np.random.uniform(low=-np.sqrt(3.0/np.sqrt(dims)), high=np.sqrt(3.0/np.sqrt(dims)), size=(numAnime, dims))
users = sorted(list(userDict.values()))
animes = sorted(list(animeDict.values()))
for animeId in animes:
if animeId in animeUserRelationship:
animeMatrix[animeId-1,0] = np.mean(animeUserRelationship[animeId][1])
for iteration in range(iterations):
print(f"------Iteration {iteration}-------")
print("Optimizing user matrix...")
#User Optimization
for i in tqdm(range(len(users))):
user = users[i]
if user in userAnimeRelationship:
watchedAnime, rating = userAnimeRelationship[user]
rating = np.array(rating,dtype=float)
subMatrix = animeMatrix[np.array(watchedAnime)-1,:]
userMatrix[i,:] = vectorTrain(subMatrix, rating, lambdaReg)
# userVec = vectorTrain(subMatrix, rating, lambdaReg)
#Anime Optimization
print("Optimizing anime matrix...")
for i in tqdm(range(len(animes))):
anime = animes[i]
if anime in animeUserRelationship:
watchedUser, rating = animeUserRelationship[anime]
rating = np.array(rating,dtype=float)
subMatrix = userMatrix[np.array(watchedUser)-1,:]
animeMatrix[i,:] = vectorTrain(subMatrix, rating, lambdaReg)
print("Saving user matrix...")
np.save("userMatrix.npy", userMatrix)
print("Saving anime matrix...")
np.save("animeMatrix.npy", animeMatrix)
# userDict, animeDict, userAnimeRelationship, animeUserRelationship = cacheRelationship("UserList.csv", "anime_cleaned.csv", "animelists_cleaned.csv")
userDict = pickle.load(open("userDict.pckl", "rb"))
animeDict = pickle.load(open("animeDict.pckl", "rb"))
userAnimeRelationship = pickle.load(open("userAnimeRelationship.pckl", "rb"))
animeUserRelationship = pickle.load(open("animeUserRelationship.pckl", "rb"))
animes = sorted(list(animeDict.values()))
avgRatings = []
for animeId in animes:
if animeId in animeUserRelationship:
avgRatings.append(np.mean(animeUserRelationship[animeId][1]))
referenceAnime = dict((v,k) for k,v in animeDict.items())
# ALStrain(20, userDict, animeDict, userAnimeRelationship, animeUserRelationship)
animeMatrix = np.load("animeMatrix.npy")
animeIds = [2049,5711,5469,4216,5285,4494,634,3010,3015,2539,4342,3803,3898,4386,759,5269,4400,489,3829,1014,4013]
ratings = [10,10,10,9,7,8,4,8,8,5,7,9,10,10,9,9,9,8,8,10,10]
subMatrix = animeMatrix[np.array(animeIds)-1,:]
lambdaReg = np.identity(128)*0.065
# print(subMatrix.shape)
userVector = vectorTrain(subMatrix, np.array(ratings), lambdaReg)
# print(userVector)
print(np.matmul(userVector, np.transpose(subMatrix)))
ratingInference = np.squeeze(np.matmul(np.expand_dims(userVector,0), np.transpose(animeMatrix)))
ratingAnimeId = [(i+1, ratingInference[i], avgRatings[i]) for i in range(ratingInference.size) if ratingInference[i] <= 10.1]
ratingAnimeId = sorted(ratingAnimeId, key=lambda x:0.8*x[1]+0.2*x[2], reverse=True)
print(ratingAnimeId)
animeIds = [referenceAnime[rating[0]] for rating in ratingAnimeId if rating[0] not in animeIds]
# print(animeIds)
# print(ratingAnimeId)
print(animeIds[:10])