-
-
Notifications
You must be signed in to change notification settings - Fork 123
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #556 from AugustJW/main
Add TRMF imputation method
- Loading branch information
Showing
3 changed files
with
347 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
""" | ||
The package including the modules of TRMF. | ||
Refer to the paper | ||
Yu, H. F., Rao, N., & Dhillon, I. S. | ||
Temporal regularized matrix factorization for high-dimensional time series prediction. | ||
In Advances in neural information processing systems 2016. | ||
<https://www.cs.utexas.edu/~rofuyu/papers/tr-mf-nips.pdf>`_ | ||
""" | ||
|
||
# Created by Jun Wang <jwangfx@connect.ust.hk> and Wenjie Du <wenjay.du@gmail.com> | ||
# License: BSD-3-Clause | ||
|
||
from .model import TRMF | ||
|
||
__all__ = [ | ||
"TRMF", | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,326 @@ | ||
""" | ||
The implementation of TRMF for the partially-observed time-series imputation task, which is mainly based on the implementation of TRMF in https://github.com/SemenovAlex/trmf/blob/master/trmf.py | ||
""" | ||
|
||
# Created by Jun Wang <jwangfx@connect.ust.hk> and Wenjie Du <wenjay.du@gmail.com> | ||
# License: BSD-3-Clause | ||
|
||
|
||
import warnings | ||
from typing import Union, Optional | ||
|
||
import h5py | ||
import numpy as np | ||
import torch | ||
|
||
from ..base import BaseImputer | ||
|
||
|
||
class TRMF: | ||
"""Temporal Regularized Matrix Factorization (TRMF) imputation method. | ||
Parameters | ||
---------- | ||
lags : array-like, shape (n_lags,) | ||
Set of lag indices to use in model. | ||
K : int | ||
Length of latent embedding dimension | ||
lambda_f : float | ||
Regularization parameter used for matrix F. | ||
lambda_x : float | ||
Regularization parameter used for matrix X. | ||
lambda_w : float | ||
Regularization parameter used for matrix W. | ||
alpha : float | ||
Regularization parameter used for make the sum of lag coefficient close to 1. | ||
That helps to avoid big deviations when forecasting. | ||
eta : float | ||
Regularization parameter used for X when undercovering autoregressive dependencies. | ||
max_iter : int | ||
Number of iterations of updating matrices F, X and W. | ||
F_step : float | ||
Step of gradient descent when updating matrix F. | ||
X_step : float | ||
Step of gradient descent when updating matrix X. | ||
W_step : float | ||
Step of gradient descent when updating matrix W. | ||
Attributes | ||
---------- | ||
F : ndarray, shape (n_timeseries, K) | ||
Latent embedding of timeseries. | ||
X : ndarray, shape (K, n_timepoints) | ||
Latent embedding of timepoints. | ||
W : ndarray, shape (K, n_lags) | ||
Matrix of autoregressive coefficients. | ||
""" | ||
|
||
def __init__(self, lags, L, K, lambda_f, lambda_x, lambda_w, alpha, eta, max_iter=1000, | ||
F_step=0.0001, X_step=0.0001, W_step=0.0001 | ||
): | ||
super(TRMF, self).__init__() | ||
|
||
self.lags = lags | ||
self.L = L | ||
self.K = K | ||
self.lambda_f = lambda_f | ||
self.lambda_x = lambda_x | ||
self.lambda_w = lambda_w | ||
self.alpha = alpha | ||
self.eta = eta | ||
self.max_iter = max_iter | ||
self.F_step = F_step | ||
self.X_step = X_step | ||
self.W_step = W_step | ||
|
||
self.W = None | ||
self.F = None | ||
self.X = None | ||
|
||
|
||
def fit(self, | ||
train_set: Union[dict, str], | ||
val_set: Optional[Union[dict, str]] = None, | ||
file_type: str = "hdf5", | ||
resume: bool = False, | ||
) -> None: | ||
"""Fit the TRMF model according to the given training data. | ||
Model fits through sequential updating three matrices: | ||
- matrix self.F; | ||
- matrix self.X; | ||
- matrix self.W. | ||
Each matrix updated with gradient descent. | ||
Parameters | ||
---------- | ||
train_set : ndarray, shape (n_timeseries, n_timepoints) | ||
Training data. | ||
val_set : ndarray, shape (n_timeseries, n_timepoints) | ||
Validation data. | ||
file_type : | ||
The type of the given file if train_set and val_set are path strings. | ||
resume : bool | ||
Used to continue fitting. | ||
Returns | ||
------- | ||
self : object | ||
Returns self. | ||
""" | ||
|
||
if isinstance(train_set, str): | ||
with h5py.File(train_set, "r") as f: | ||
X = f["X"][:] | ||
else: | ||
X = train_set["X"] | ||
|
||
assert len(X.shape) == 2, ( | ||
f"Input X should have 2 dimensions [n_samples, n_features], " | ||
f"but the actual shape of X: {X.shape}" | ||
) | ||
if isinstance(X, list): | ||
X = np.asarray(X) | ||
|
||
if not resume: | ||
self.Y = X.copy() | ||
mask = np.array((~np.isnan(self.Y)).astype(int)) | ||
self.mask = mask | ||
self.Y[self.mask == 0] = 0. | ||
self.N, self.T = self.Y.shape | ||
self.W = np.random.randn(self.K, self.L) / self.L | ||
self.F = np.random.randn(self.N, self.K) | ||
self.X = np.random.randn(self.K, self.T) | ||
|
||
for _ in range(self.max_iter): | ||
self._update_F(step=self.F_step) | ||
self._update_X(step=self.X_step) | ||
self._update_W(step=self.W_step) | ||
|
||
|
||
def impute_missings(self): | ||
"""Impute each missing element in timeseries. | ||
Model uses matrix X and F to get all missing elements. | ||
Parameters | ||
---------- | ||
Returns | ||
------- | ||
data : ndarray, shape (n_timeseries, T) | ||
Predictions. | ||
""" | ||
data = self.Y | ||
data[self.mask == 0] = np.dot(self.F, self.X)[self.mask == 0] | ||
result_dict = { | ||
"imputation": data, | ||
} | ||
return result_dict | ||
|
||
|
||
def impute( | ||
self, | ||
) -> np.ndarray: | ||
result_dict = self.impute_missings() | ||
return result_dict["imputation"] | ||
|
||
|
||
def _update_F(self, step, n_iter=1): | ||
"""Gradient descent of matrix F. | ||
n_iter steps of gradient descent of matrix F. | ||
Parameters | ||
---------- | ||
step : float | ||
Step of gradient descent when updating matrix. | ||
n_iter : int | ||
Number of gradient steps to be made. | ||
Returns | ||
------- | ||
self : objects | ||
Returns self. | ||
""" | ||
|
||
for _ in range(n_iter): | ||
self.F -= step * self._grad_F() | ||
|
||
|
||
def _update_X(self, step, n_iter=1): | ||
"""Gradient descent of matrix X. | ||
n_iter steps of gradient descent of matrix X. | ||
Parameters | ||
---------- | ||
step : float | ||
Step of gradient descent when updating matrix. | ||
n_iter : int | ||
Number of gradient steps to be made. | ||
Returns | ||
------- | ||
self : objects | ||
Returns self. | ||
""" | ||
|
||
for _ in range(n_iter): | ||
self.X -= step * self._grad_X() | ||
|
||
|
||
def _update_W(self, step, n_iter=1): | ||
"""Gradient descent of matrix W. | ||
n_iter steps of gradient descent of matrix W. | ||
Parameters | ||
---------- | ||
step : float | ||
Step of gradient descent when updating matrix. | ||
n_iter : int | ||
Number of gradient steps to be made. | ||
Returns | ||
------- | ||
self : objects | ||
Returns self. | ||
""" | ||
|
||
for _ in range(n_iter): | ||
self.W -= step * self._grad_W() | ||
|
||
|
||
def _grad_F(self): | ||
"""Gradient of matrix F. | ||
Evaluating gradient of matrix F. | ||
Parameters | ||
---------- | ||
Returns | ||
------- | ||
self : objects | ||
Returns self. | ||
""" | ||
|
||
return - 2 * np.dot((self.Y - np.dot(self.F, self.X)) * self.mask, self.X.T) + 2 * self.lambda_f * self.F | ||
|
||
|
||
def _grad_X(self): | ||
"""Gradient of matrix X. | ||
Evaluating gradient of matrix X. | ||
Parameters | ||
---------- | ||
Returns | ||
------- | ||
self : objects | ||
Returns self. | ||
""" | ||
|
||
for l in range(self.L): | ||
lag = self.lags[l] | ||
W_l = self.W[:, l].repeat(self.T, axis=0).reshape(self.K, self.T) | ||
X_l = self.X * W_l | ||
z_1 = self.X - np.roll(X_l, lag, axis=1) | ||
z_1[:, :max(self.lags)] = 0. | ||
z_2 = - (np.roll(self.X, -lag, axis=1) - X_l) * W_l | ||
z_2[:, -lag:] = 0. | ||
|
||
grad_T_x = z_1 + z_2 | ||
return - 2 * np.dot(self.F.T, self.mask * (self.Y - np.dot(self.F, self.X))) + self.lambda_x * grad_T_x + self.eta * self.X | ||
|
||
|
||
def _grad_W(self): | ||
"""Gradient of matrix W. | ||
Evaluating gradient of matrix W. | ||
Parameters | ||
---------- | ||
Returns | ||
------- | ||
self : objects | ||
Returns self. | ||
""" | ||
|
||
grad = np.zeros((self.K, self.L)) | ||
for l in range(self.L): | ||
lag = self.lags[l] | ||
W_l = self.W[:, l].repeat(self.T, axis=0).reshape(self.K, self.T) | ||
X_l = self.X * W_l | ||
z_1 = self.X - np.roll(X_l, lag, axis=1) | ||
z_1[:, :max(self.lags)] = 0. | ||
z_2 = - (z_1 * np.roll(self.X, lag, axis=1)).sum(axis=1) | ||
grad[:, l] = z_2 | ||
return grad + self.W * 2 * self.lambda_w / self.lambda_x -\ | ||
self.alpha * 2 * (1 - self.W.sum(axis=1)).repeat(self.L).reshape(self.W.shape) |