Skip to content

Commit

Permalink
Merge pull request #510 from WenjieDu/(refactor)random_walk
Browse files Browse the repository at this point in the history
Import random walk funcs from BenchPOTS and add AI4TS as a dependency
  • Loading branch information
WenjieDu authored Sep 12, 2024
2 parents e20ede8 + 2f4413c commit 63666fb
Show file tree
Hide file tree
Showing 6 changed files with 43 additions and 342 deletions.
10 changes: 1 addition & 9 deletions pypots/data/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,12 +6,7 @@
# License: BSD-3-Clause

from .dataset import BaseDataset, SUPPORTED_DATASET_FILE_FORMATS
from .generating import (
gene_complete_random_walk,
gene_complete_random_walk_for_anomaly_detection,
gene_complete_random_walk_for_classification,
gene_random_walk,
)
from .generating import gene_random_walk
from .saving import (
save_dict_into_h5,
load_dict_from_h5,
Expand All @@ -30,9 +25,6 @@
"BaseDataset",
"SUPPORTED_DATASET_FILE_FORMATS",
# dataset generation functions
"gene_complete_random_walk",
"gene_complete_random_walk_for_anomaly_detection",
"gene_complete_random_walk_for_classification",
"gene_random_walk",
"load_specific_dataset",
# utils
Expand Down
316 changes: 19 additions & 297 deletions pypots/data/generating.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,319 +5,41 @@
# Created by Wenjie Du <wenjay.du@gmail.com>
# License: BSD-3-Clause

import math
from typing import Optional, Tuple

import numpy as np
from benchpots.datasets import preprocess_physionet2012
from pygrinder import mcar
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.utils import check_random_state
from benchpots.datasets import preprocess_physionet2012, preprocess_random_walk

from ..utils.logging import logger


def gene_complete_random_walk(
n_samples: int = 1000,
n_steps: int = 24,
n_features: int = 10,
mu: float = 0.0,
std: float = 1.0,
random_state: Optional[int] = None,
) -> np.ndarray:
"""Generate complete random walk time-series data, i.e. having no missing values.
Parameters
----------
n_samples : int, default=1000
The number of training time-series samples to generate.
n_steps: int, default=24
The number of time steps (length) of generated time-series samples.
n_features : int, default=10
The number of features (dimensions) of generated time-series samples.
mu : float, default=0.0
Mean of the normal distribution, which random walk steps are sampled from.
std : float, default=1.0
Standard deviation of the normal distribution, which random walk steps are sampled from.
random_state : int, default=None
Random seed for data generation.
Returns
-------
ts_samples: array, shape of [n_samples, n_steps, n_features]
Generated random walk time series.
"""
seed = check_random_state(random_state)
ts_samples = np.zeros([n_samples, n_steps, n_features])
random_values = seed.randn(n_samples, n_steps, n_features) * std + mu
ts_samples[:, 0, :] = random_values[:, 0, :]
for t in range(1, n_steps):
ts_samples[:, t, :] = ts_samples[:, t - 1, :] + random_values[:, t, :]
ts_samples = np.asarray(ts_samples)
return ts_samples


def gene_complete_random_walk_for_classification(
n_classes: int = 2,
n_samples_each_class: int = 500,
n_steps: int = 24,
n_features: int = 10,
shuffle: bool = True,
random_state: Optional[int] = None,
) -> Tuple[np.ndarray, np.ndarray]:
"""Generate complete random walk time-series data for the classification task.
Parameters
----------
n_classes : int, must >=1, default=2
Number of classes (types) of the generated data.
n_samples_each_class : int, default=500
Number of samples for each class to generate.
n_steps : int, default=24
Number of time steps in each sample.
n_features : int, default=10
Number of features.
shuffle : bool, default=True
Whether to shuffle generated samples.
If not, you can separate samples of each class according to `n_samples_each_class`.
For example,
X_class0=X[:n_samples_each_class],
X_class1=X[n_samples_each_class:n_samples_each_class*2]
random_state : int, default=None
Random seed for data generation.
Returns
-------
X : array, shape of [n_samples, n_steps, n_features]
Generated time-series data.
y : array, shape of [n_samples]
Labels indicating classes of time-series samples.
"""
assert n_classes > 1, f"n_classes should be >1, but got {n_classes}"

ts_collector = []
label_collector = []

mu = 0
std = 1

for c_ in range(n_classes):
ts_samples = gene_complete_random_walk(n_samples_each_class, n_steps, n_features, mu, std, random_state)
label_samples = np.asarray([1 for _ in range(n_samples_each_class)]) * c_
ts_collector.extend(ts_samples)
label_collector.extend(label_samples)
mu += 1

X = np.asarray(ts_collector)
y = np.asarray(label_collector)

# if shuffling, then shuffle the order of samples
if shuffle:
indices = np.arange(len(X))
np.random.shuffle(indices)
X = X[indices]
y = y[indices]

return X, y


def gene_complete_random_walk_for_anomaly_detection(
n_samples: int = 1000,
n_steps: int = 24,
n_features: int = 10,
mu: float = 0.0,
std: float = 1.0,
anomaly_proportion: float = 0.1,
anomaly_fraction: float = 0.02,
anomaly_scale_factor: float = 2.0,
random_state: Optional[int] = None,
) -> Tuple[np.ndarray, np.ndarray]:
"""Generate random walk time-series data for the anomaly-detection task.
Parameters
----------
n_samples : int, default=1000
The number of training time-series samples to generate.
n_features : int, default=10
The number of features (dimensions) of generated time-series samples.
n_steps: int, default=24
The number of time steps (length) of generated time-series samples.
mu : float, default=0.0
Mean of the normal distribution, which random walk steps are sampled from.
std : float, default=1.0
Standard deviation of the normal distribution, which random walk steps are sampled from.
anomaly_proportion : float, default=0.1
Proportion of anomaly samples in all samples.
anomaly_fraction : float, default=0.02
Fraction of anomaly points in each anomaly sample.
anomaly_scale_factor : float, default=2.0
Scale factor for value scaling to create anomaly points in time series samples.
random_state : int, default=None
Random seed for data generation.
Returns
-------
X : array, shape of [n_samples, n_steps, n_features]
Generated time-series data.
y : array, shape of [n_samples]
Labels indicating if time-series samples are anomalies.
"""
assert 0 < anomaly_proportion < 1, f"anomaly_proportion should be >0 and <1, but got {anomaly_proportion}"
assert 0 < anomaly_fraction < 1, f"anomaly_fraction should be >0 and <1, but got {anomaly_fraction}"
seed = check_random_state(random_state)
X = seed.randn(n_samples, n_steps, n_features) * std + mu
n_anomaly = math.floor(n_samples * anomaly_proportion)
anomaly_indices = np.random.choice(n_samples, size=n_anomaly, replace=False)
for a_i in anomaly_indices:
anomaly_sample = X[a_i]
anomaly_sample = anomaly_sample.flatten()
min_val = anomaly_sample.min()
max_val = anomaly_sample.max()
max_difference = min_val - max_val
n_points = n_steps * n_features
n_anomaly_points = int(n_points * anomaly_fraction)
point_indices = np.random.choice(a=n_points, size=n_anomaly_points, replace=False)
for p_i in point_indices:
anomaly_sample[p_i] = mu + np.random.uniform(
low=min_val - anomaly_scale_factor * max_difference,
high=max_val + anomaly_scale_factor * max_difference,
)
X[a_i] = anomaly_sample.reshape(n_steps, n_features)

# create labels
y = np.zeros(n_samples)
y[anomaly_indices] = 1

# shuffling
indices = np.arange(n_samples)
np.random.shuffle(indices)
X = X[indices]
y = y[indices]

return X, y


def gene_random_walk(
n_steps=24,
n_features=10,
n_classes=2,
n_samples_each_class=1000,
missing_rate=0.1,
) -> dict:
"""Generate a random-walk data.
Parameters
----------
n_steps : int, default=24
Number of time steps in each sample.
n_features : int, default=10
Number of features.
n_classes : int, default=2
Number of classes (types) of the generated data.
n_samples_each_class : int, default=1000
Number of samples for each class to generate.
missing_rate : float, default=0.1
The rate of randomly missing values to generate, should be in [0,1).
Returns
-------
data: dict,
A dictionary containing the generated data.
"""
assert 0 <= missing_rate < 1, "missing_rate must be in [0,1)"

# generate samples
X, y = gene_complete_random_walk_for_classification(
n_classes=n_classes,
n_samples_each_class=n_samples_each_class,
n_steps=n_steps,
n_features=n_features,
):
dataset_from_benchpots = preprocess_random_walk(
n_steps,
n_features,
n_classes,
n_samples_each_class,
missing_rate,
)
# split into train/val/test sets
train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2)
train_X, val_X, train_y, val_y = train_test_split(train_X, train_y, test_size=0.2)

if missing_rate > 0:
# create random missing values
train_X_ori = train_X
train_X = mcar(train_X, missing_rate)
# test set is left to mask after normalization

train_X = train_X.reshape(-1, n_features)
val_X = val_X.reshape(-1, n_features)
test_X = test_X.reshape(-1, n_features)
# normalization
scaler = StandardScaler()
train_X = scaler.fit_transform(train_X)
val_X = scaler.transform(val_X)
test_X = scaler.transform(test_X)
# reshape into time series samples
train_X = train_X.reshape(-1, n_steps, n_features)
val_X = val_X.reshape(-1, n_steps, n_features)
test_X = test_X.reshape(-1, n_steps, n_features)
data = {
"n_classes": n_classes,
"n_steps": n_steps,
"n_features": n_features,
"train_X": train_X,
"train_y": train_y,
"val_X": val_X,
"val_y": val_y,
"test_X": test_X,
"test_y": test_y,
"scaler": scaler,
}

if missing_rate > 0:
# mask values in the test set as ground truth
train_X_ori = scaler.transform(train_X_ori.reshape(-1, n_features)).reshape(-1, n_steps, n_features)
data["train_X_ori"] = train_X_ori

val_X_ori = val_X
val_X = mcar(val_X, missing_rate)
data["val_X"] = val_X
data["val_X_ori"] = val_X_ori

test_X_ori = test_X
test_X = mcar(test_X, missing_rate)
data["test_X"] = test_X
data["test_X_ori"] = np.nan_to_num(test_X_ori) # fill NaNs for later error calc
data["test_X_indicating_mask"] = np.isnan(test_X_ori) ^ np.isnan(test_X)

return data
logger.warning(
"🚨 BenchPOTS package now is fully released and includes preprocessing functions for 170+ datasets. "
"gene_random_walk() has been deprecated and will be removed in pypots v0.9"
)
logger.info(
"🌟 Please refer to https://github.com/WenjieDu/BenchPOTS and "
"check out the func benchpots.datasets.preprocess_physionet2012()"
)
return dataset_from_benchpots


def gene_physionet2012(artificially_missing_rate: float = 0.1):
dataset_from_benchpots = preprocess_physionet2012(subset="all", rate=artificially_missing_rate)
logger.warning(
"🚨 Due to the full release of BenchPOTS package, "
"gene_physionet2012() has been deprecated and will be removed in pypots v0.8"
"🚨 BenchPOTS package now is fully released and includes preprocessing functions for 170+ datasets. "
"gene_physionet2012() has been deprecated and will be removed in pypots v0.9"
)
logger.info(
"🌟 Please refer to https://github.com/WenjieDu/BenchPOTS and "
Expand Down
7 changes: 2 additions & 5 deletions pypots/gungnir/client.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,12 +5,9 @@
# Created by Wenjie Du <wenjay.du@gmail.com>
# License: BSD-3-Clause

from ..utils.logging import logger

from ai4ts.client import TimeSeriesAI

class TimeSeriesAI:
def __init__(self):
pass
from ..utils.logging import logger


class Gungnir(TimeSeriesAI):
Expand Down
8 changes: 6 additions & 2 deletions requirements/conda_env.yml
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,11 @@ dependencies:
- conda-forge::matplotlib
- conda-forge::tensorboard
- conda-forge::scikit-learn
- conda-forge::pygrinder >=0.6.2
- conda-forge::pygrinder >=0.6.4
- conda-forge::tsdb >=0.6.1
- conda-forge::benchpots >=0.2.1
- conda-forge::benchpots >=0.3
- pytorch::pytorch >=1.10.0

- pip:
# not published on conda-forge yet
- ai4ts
Loading

0 comments on commit 63666fb

Please sign in to comment.