This repo contains the code and data for our PACE (ICML 2024 paper):
Probabilistic Conceptual Explainers: Trustworthy Conceptual Explanations for Vision Foundation Models
Hengyi Wang, Shiwei Tan, Hao Wang
[Paper] [ICML Website]
and our VALC (EMNLP 2024 Findings paper):
Variational Language Concepts for Interpreting Foundation Language Models
[Paper] [ACL Website]
conda env create -f environment_PACE.yml
conda activate PACE
cd src
python generate_data.py
python main.py --train --task Color --name ViT-base --num_epochs 5 --lr 1e-3 --require_grad
python main.py --train --task Color --name ViT-PACE --num_epochs 1
python main.py --task Color --name ViT-PACE --num_epochs 1
Coming Soon!
@inproceedings{PACE,
title={Probabilistic Conceptual Explainers: Trustworthy Conceptual Explanations for Vision Foundation Models},
author={Hengyi Wang and
Shiwei Tan and
Hao Wang},
booktitle={International Conference on Machine Learning},
year={2024}
}
@inproceedings{VALC,
title={Variational Language Concepts for Interpreting Foundation Language Models},
author={Hengyi Wang and
Shiwei Tan and
Zhiqing Hong and
Desheng Zhang and
Hao Wang},
booktitle={Findings of the Association for Computational Linguistics: EMNLP 2024},
year={2024}
}