-
Notifications
You must be signed in to change notification settings - Fork 29
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
153 additions
and
36 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
import torch | ||
from torch import nn | ||
from torch.utils.data import DataLoader | ||
from torchvision import datasets | ||
from torchvision.transforms import ToTensor | ||
|
||
|
||
def prepare_data_loaders(): | ||
training_data = datasets.FashionMNIST( | ||
root="data", | ||
train=True, | ||
download=True, | ||
transform=ToTensor(), | ||
) | ||
|
||
test_data = datasets.FashionMNIST( | ||
root="data", | ||
train=False, | ||
download=True, | ||
transform=ToTensor(), | ||
) | ||
|
||
batch_size = 64 | ||
test_dataloader = DataLoader(test_data, batch_size=batch_size) | ||
|
||
return DataLoader(training_data, batch_size=batch_size), test_dataloader | ||
|
||
|
||
def get_device(): | ||
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | ||
print(f"Using {device} device") | ||
|
||
return device | ||
|
||
|
||
def prepare_net(device): | ||
class NeuralNetwork(nn.Module): | ||
def __init__(self): | ||
super().__init__() | ||
self.flatten = nn.Flatten() | ||
self.linear_relu_stack = nn.Sequential( | ||
nn.Linear(28 * 28, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 10) | ||
) | ||
|
||
def forward(self, x): | ||
x = self.flatten(x) | ||
logits = self.linear_relu_stack(x) | ||
return logits | ||
|
||
model = NeuralNetwork().to(device) | ||
|
||
loss_fn = nn.CrossEntropyLoss() | ||
optimizer = torch.optim.AdamW(model.parameters()) | ||
# optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) | ||
|
||
return model, loss_fn, optimizer | ||
|
||
|
||
def train(dataloader, model, loss_fn, optimizer, device): | ||
size = len(dataloader.dataset) | ||
model.train() | ||
for batch, (X, y) in enumerate(dataloader): | ||
X, y = X.to(device), y.to(device) | ||
|
||
# Compute prediction error | ||
pred = model(X) | ||
loss = loss_fn(pred, y) | ||
|
||
# Backpropagation | ||
loss.backward() | ||
optimizer.step() | ||
optimizer.zero_grad() | ||
|
||
if batch % 100 == 0: | ||
loss, current = loss.item(), (batch + 1) * len(X) | ||
|
||
|
||
def test(dataloader, model, loss_fn, device): | ||
size = len(dataloader.dataset) | ||
num_batches = len(dataloader) | ||
model.eval() | ||
test_loss, correct = 0, 0 | ||
with torch.no_grad(): | ||
for X, y in dataloader: | ||
X, y = X.to(device), y.to(device) | ||
pred = model(X) | ||
test_loss += loss_fn(pred, y).item() | ||
correct += (pred.argmax(1) == y).type(torch.float).sum().item() | ||
test_loss /= num_batches | ||
correct /= size | ||
|
||
return pred.cpu().numpy() | ||
|
||
|
||
def run(): | ||
device = get_device() | ||
model, loss_fn, optimizer = prepare_net(device) | ||
train_dataloader, test_dataloader = prepare_data_loaders() | ||
epochs = 5 | ||
for t in range(epochs): | ||
train(train_dataloader, model, loss_fn, optimizer, device) | ||
com = test(test_dataloader, model, loss_fn, device) | ||
|
||
return com | ||
|
||
|
||
com = 0 | ||
while True: | ||
com += run() | ||
torch.mps.empty_cache() | ||
print(torch.mps.driver_allocated_memory() // 1024) | ||
|
||
# 420 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters