-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
31 changed files
with
10,799 additions
and
0 deletions.
There are no files selected for viewing
31 changes: 31 additions & 0 deletions
31
2024/Neural Network/Chapter01/Chapter1_NN_Introduction_Restaurant.R
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
######################################################################## | ||
##Chapter 1 - Introduction to Neural Networks - using R ################ | ||
###Simple R program to build, train and test neural networks ########### | ||
### Classification based on 3 inputs and 1 categorical output ########## | ||
######################################################################## | ||
|
||
###Choose the libraries to use | ||
library(NeuralNetTools) | ||
library(nnet) | ||
|
||
###Set working directory for the training data | ||
setwd("C:/R") | ||
getwd() | ||
|
||
###Read the input file | ||
mydata=read.csv('RestaurantTips.csv',sep=",",header=TRUE) | ||
mydata | ||
attach(mydata) | ||
names(mydata) | ||
|
||
##Train the model based on output from input | ||
model=nnet(CustomerWillTip~Service+Ambience+Food, | ||
data=mydata, | ||
size =5, | ||
rang=0.1, | ||
decay=5e-2, | ||
maxit=5000) | ||
print(model) | ||
plotnet(model) | ||
garson(model) | ||
######################################################################## |
34 changes: 34 additions & 0 deletions
34
2024/Neural Network/Chapter01/Chapter1_NN_Introduction_Squares.R
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
######################################################################### | ||
###Chapter 1 - Introduction to Neural Networks - using R ################ | ||
###Simple R program to build, train and test neural Networks############# | ||
######################################################################### | ||
#Choose the libraries to use | ||
library("neuralnet") | ||
|
||
#Set working directory for the training data | ||
setwd("C:/R") | ||
getwd() | ||
|
||
#Read the input file | ||
mydata=read.csv('Squares.csv',sep=",",header=TRUE) | ||
mydata | ||
attach(mydata) | ||
names(mydata) | ||
|
||
#Train the model based on output from input | ||
model=neuralnet(formula = Output~Input, | ||
data = mydata, | ||
hidden=10, | ||
threshold=0.01 ) | ||
print(model) | ||
|
||
#Lets plot and see the layers | ||
plot(model) | ||
|
||
#Check the data - actual and predicted | ||
final_output=cbind (Input, Output, | ||
as.data.frame(model$net.result) ) | ||
colnames(final_output) = c("Input", "Expected Output", | ||
"Neural Net Output" ) | ||
print(final_output) | ||
######################################################################### |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
no,CustomerWillTip,Service,Ambience,Food,TipOrNo | ||
1,1,4,4,5,Tip | ||
2,1,6,4,4,Tip | ||
3,1,5,2,4,Tip | ||
4,1,6,5,5,Tip | ||
5,1,6,3,4,Tip | ||
6,1,3,4,5,Tip | ||
7,1,5,5,5,Tip | ||
8,1,5,4,4,Tip | ||
9,1,7,6,4,Tip | ||
10,1,7,6,4,Tip | ||
11,1,6,7,2,Tip | ||
12,1,5,6,4,Tip | ||
13,1,7,3,3,Tip | ||
14,1,5,1,4,Tip | ||
15,1,7,5,5,Tip | ||
16,0,3,1,3,No-tip | ||
17,0,4,6,2,No-tip | ||
18,0,2,5,2,No-tip | ||
19,0,5,2,4,No-tip | ||
20,0,4,1,3,No-tip | ||
21,0,3,3,4,No-tip | ||
22,0,3,4,5,No-tip | ||
23,0,3,6,3,No-tip | ||
24,0,4,4,2,No-tip | ||
25,0,6,3,6,No-tip | ||
26,0,3,6,3,No-tip | ||
27,0,4,3,2,No-tip | ||
28,0,3,5,2,No-tip | ||
29,0,5,5,3,No-tip | ||
30,0,1,3,2,No-tip |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
Input,Output | ||
0,0 | ||
1,1 | ||
2,4 | ||
3,9 | ||
4,16 | ||
5,25 | ||
6,36 | ||
7,49 | ||
8,64 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
##################################################################### | ||
###Chapter 2 - Introduction to Neural Networks - using R ############ | ||
###Simple R program to build, train, test regression neural networks# | ||
##################################################################### | ||
library("neuralnet") | ||
library(MASS) | ||
|
||
set.seed(1) | ||
|
||
data = Boston | ||
|
||
max_data <- apply(data, 2, max) | ||
min_data <- apply(data, 2, min) | ||
data_scaled <- scale(data,center = min_data, scale = max_data - min_data) | ||
|
||
index = sample(1:nrow(data),round(0.70*nrow(data))) | ||
train_data <- as.data.frame(data_scaled[index,]) | ||
test_data <- as.data.frame(data_scaled[-index,]) | ||
|
||
n = names(data) | ||
f = as.formula(paste("medv ~", paste(n[!n %in% "medv"], collapse = " + "))) | ||
net_data = neuralnet(f,data=train_data,hidden=10,linear.output=T) | ||
plot(net_data) | ||
|
||
predict_net_test <- compute(net_data,test_data[,1:13]) | ||
|
||
predict_net_test_start <- predict_net_test$net.result*(max(data$medv)-min(data$medv))+min(data$medv) | ||
test_start <- as.data.frame((test_data$medv)*(max(data$medv)-min(data$medv))+min(data$medv)) | ||
MSE.net_data <- sum((test_start - predict_net_test_start)^2)/nrow(test_start) | ||
|
||
Regression_Model <- lm(medv~., data=data) | ||
summary(Regression_Model) | ||
test <- data[-index,] | ||
predict_lm <- predict(Regression_Model,test) | ||
MSE.lm <- sum((predict_lm - test$medv)^2)/nrow(test) | ||
|
||
MSE.net_data | ||
MSE.lm | ||
########################################################################### |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
###################################################################### | ||
###Chapter 2 - Introduction to Neural Networks - using R ########## | ||
###Usuervised ML technique using Kohonen package #################### | ||
###################################################################### | ||
|
||
library("kohonen") | ||
|
||
data("wines") | ||
str(wines) | ||
head(wines) | ||
View (wines) | ||
|
||
set.seed(1) | ||
som.wines = som(scale(wines), grid = somgrid(5, 5, "hexagonal")) | ||
som.wines | ||
dim(getCodes(som.wines)) | ||
|
||
plot(som.wines, main = "Wine data Kohonen SOM") | ||
par(mfrow = c(1, 1)) | ||
plot(som.wines, type = "changes", main = "Wine data: SOM") | ||
|
||
training = sample(nrow(wines), 150) | ||
Xtraining = scale(wines[training, ]) | ||
Xtest = scale(wines[-training, ], | ||
center = attr(Xtraining, "scaled:center"), | ||
scale = attr(Xtraining, "scaled:scale")) | ||
trainingdata = list(measurements = Xtraining, | ||
vintages = vintages[training]) | ||
testdata = list(measurements = Xtest, vintages = vintages[-training]) | ||
mygrid = somgrid(5, 5, "hexagonal") | ||
som.wines = supersom(trainingdata, grid = mygrid) | ||
|
||
som.prediction = predict(som.wines, newdata = testdata) | ||
table(vintages[-training], som.prediction$predictions[["vintages"]]) | ||
###################################################################### |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
########################################################################### | ||
#############Chapter 3 - Deep Learning with neuralnet###################### | ||
########################################################################### | ||
library("neuralnet") | ||
library(ISLR) | ||
|
||
data = College | ||
View(data) | ||
|
||
max_data <- apply(data[,2:18], 2, max) | ||
min_data <- apply(data[,2:18], 2, min) | ||
data_scaled <- scale(data[,2:18],center = min_data, scale = max_data - min_data) | ||
|
||
Private = as.numeric(College$Private)-1 | ||
data_scaled = cbind(Private,data_scaled) | ||
|
||
index = sample(1:nrow(data),round(0.70*nrow(data))) | ||
train_data <- as.data.frame(data_scaled[index,]) | ||
test_data <- as.data.frame(data_scaled[-index,]) | ||
|
||
n = names(train_data) | ||
f <- as.formula(paste("Private ~", paste(n[!n %in% "Private"], collapse = " + "))) | ||
deep_net = neuralnet(f,data=train_data,hidden=c(5,3),linear.output=F) | ||
plot(deep_net) | ||
|
||
predicted_data <- compute(deep_net,test_data[,2:18]) | ||
print(head(predicted_data$net.result)) | ||
predicted_data$net.result <- sapply(predicted_data$net.result,round,digits=0) | ||
|
||
table(test_data$Private,predicted_data$net.result) | ||
|
||
########################################################################### |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
########################################################################## | ||
#################Chapter 3 - Deep Learning with H2O and R################# | ||
########################################################################## | ||
|
||
library(h2o) | ||
|
||
c1=h2o.init(max_mem_size = "2G", | ||
nthreads = 2, | ||
ip = "localhost", | ||
port = 54321) | ||
|
||
data(iris) | ||
summary(iris) | ||
|
||
iris_d1 <- h2o.deeplearning(1:4,5, | ||
as.h2o(iris),hidden=c(5,5), | ||
export_weights_and_biases=T) | ||
iris_d1 | ||
plot(iris_d1) | ||
|
||
h2o.weights(iris_d1, matrix_id=1) | ||
h2o.weights(iris_d1, matrix_id=2) | ||
h2o.weights(iris_d1, matrix_id=3) | ||
h2o.biases(iris_d1, vector_id=1) | ||
h2o.biases(iris_d1, vector_id=2) | ||
h2o.biases(iris_d1, vector_id=3) | ||
|
||
#plot weights connecting `Sepal.Length` to first hidden neurons | ||
plot(as.data.frame(h2o.weights(iris_d1, matrix_id=1))[,1]) | ||
|
||
########################################################################## |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
###################################################################### | ||
###Chapter 4 - Introduction to Neural Networks - using R ########## | ||
###Simple Perceptron implementation function in R - iris dataset #### | ||
###################################################################### | ||
|
||
data(iris) | ||
head(iris, n=20) | ||
|
||
iris_sub=iris[1:100, c(1, 3, 5)] | ||
names(iris_sub)=c("sepal", "petal", "species") | ||
head(iris_sub) | ||
|
||
library(ggplot2) | ||
|
||
ggplot(iris_sub, aes(x = sepal, y = petal)) + | ||
geom_point(aes(colour=species, shape=species), size = 3) + | ||
xlab("Sepal length") + | ||
ylab("Petal length") + | ||
ggtitle("Species vs Sepal and Petal lengths") | ||
|
||
euclidean.norm = function(x) {sqrt(sum(x * x))} | ||
|
||
distance.from.plane = function(z,w,b) { | ||
sum(z*w) + b | ||
} | ||
|
||
classify.linear = function(x,w,b) { | ||
distances = apply(x, 1, distance.from.plane, w, b) | ||
return(ifelse(distances < 0, -1, +1)) | ||
} | ||
|
||
perceptron = function(x, y, learning.rate=1) { | ||
w = vector(length = ncol(x)) # initialize weights | ||
b = 0 # Initialize bias | ||
k = 0 # count updates | ||
R = max(apply(x, 1, euclidean.norm)) | ||
mark.complete = TRUE | ||
|
||
while (mark.complete) { | ||
mark.complete=FALSE | ||
yc = classify.linear(x,w,b) | ||
for (i in 1:nrow(x)) { | ||
if (y[i] != yc[i]) { | ||
w = w + learning.rate * y[i]*x[i,] | ||
b = b + learning.rate * y[i]*R^2 | ||
k = k+1 | ||
mark.complete=TRUE | ||
} | ||
} | ||
} | ||
s = euclidean.norm(w) | ||
return(list(w=w/s,b=b/s,updates=k)) | ||
} | ||
|
||
x = cbind(iris_sub$sepal, iris_sub$petal) | ||
|
||
y = ifelse(iris_sub$species == "setosa", +1, -1) | ||
|
||
p = perceptron(x,y) | ||
|
||
plot(x,cex=0.2) | ||
|
||
points(subset(x,Y==1),col="black",pch="+",cex=2) | ||
points(subset(x,Y==-1),col="red",pch="-",cex=2) | ||
|
||
intercept = - p$b / p$w[[2]] | ||
slope = - p$w[[1]] /p$ w[[2]] | ||
|
||
abline(intercept,slope,col="green") | ||
} | ||
|
||
|
||
# Set the x inputs as Sepal and Petal lengths | ||
x = cbind(iris_sub$sepal, iris_sub$petal) | ||
|
||
# Lets label output as positive for setosa and the rest as negative | ||
y = ifelse(iris_sub$species == "setosa", +1, -1) | ||
|
||
#run the perceptron function | ||
p = perceptron(x,y) | ||
|
||
#Plot the linear separation | ||
plot(x,cex=0.2) | ||
|
||
points(subset(x,Y==1),col="black",pch="+",cex=2) | ||
points(subset(x,Y==-1),col="red",pch="-",cex=2) | ||
|
||
intercept = - p$b / p$w[[2]] | ||
slope = - p$w[[1]] /p$ w[[2]] | ||
|
||
abline(intercept,slope,col="green") | ||
|
||
###################################################################### |
Oops, something went wrong.