Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Vectorized MetaFairClassifier and removed unused code #196

Merged
merged 2 commits into from
Feb 12, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
205 changes: 59 additions & 146 deletions aif360/algorithms/inprocessing/celisMeta/FalseDiscovery.py
Original file line number Diff line number Diff line change
@@ -1,151 +1,64 @@
from __future__ import division

import os,sys
from scipy.stats import multivariate_normal
import scipy.stats as st
import numpy as np
import math

import site
site.addsitedir('.')

from .General import *
from . import utils as ut
from aif360.algorithms.inprocessing.celisMeta.General import General


class FalseDiscovery(General):

def getExpectedGrad(self, dist_params, params, samples, mu, z_0, z_1, a, b):
u_1, u_2, l_1, l_2 = params[0], params[1], params[2], params[3]
a, b = a[0], b[0]
res1 = []
res2 = []
res3 = []
res4 = []
for x in samples:
temp = np.append(np.append(x, 1), 1)
prob_1_1 = ut.getProbability(dist_params, temp)

temp = np.append(np.append(x, -1), 1)
prob_m1_1 = ut.getProbability(dist_params, temp)

temp = np.append(np.append(x, 1), 0)
prob_1_0 = ut.getProbability(dist_params, temp)

temp = np.append(np.append(x, -1), 0)
prob_m1_0 = ut.getProbability(dist_params, temp)


prob_y_1 = (prob_1_1 + prob_1_0) / (prob_1_1 + prob_1_0 + prob_m1_0 + prob_m1_1)
#print(prob_y_1)

prob_z_0 = (prob_m1_0 + prob_1_0) / (prob_1_1 + prob_1_0 + prob_m1_0 + prob_m1_1)
prob_z_1 = (prob_m1_1 + prob_1_1) / (prob_1_1 + prob_1_0 + prob_m1_0 + prob_m1_1)

probc_m1_0 = prob_m1_0 / (prob_1_1 + prob_1_0 + prob_m1_0 + prob_m1_1)
probc_m1_1 = prob_m1_1 / (prob_1_1 + prob_1_0 + prob_m1_0 + prob_m1_1)

c_0 = prob_y_1 - 0.5
c_1 = u_1 * (probc_m1_0 - a*prob_z_0) + u_2 * (probc_m1_1 - a*prob_z_1)
c_2 = l_1 * (- probc_m1_0 + b*prob_z_0) + l_2 * (- probc_m1_1 + b*prob_z_1)

t = math.sqrt((c_0 + c_1 + c_2)*(c_0 + c_1 + c_2) + mu*mu)
t1 = (c_0 + c_1 + c_2) * (probc_m1_0 - a*prob_z_0)/t
t2 = (c_0 + c_1 + c_2) * (probc_m1_1 - a*prob_z_1)/t
t3 = (c_0 + c_1 + c_2) * (- probc_m1_0 + b*prob_z_0)/t
t4 = (c_0 + c_1 + c_2) * (- probc_m1_1 + b*prob_z_1)/t
#print(t1,t2)
res1.append(t1)
res2.append(t2)
res3.append(t3)
res4.append(t4)

return [np.mean(res1), np.mean(res2), np.mean(res3), np.mean(res4)]

def getValueForX(self, dist_params, a,b, params, samples, z_0, z_1, x, flag):
u_1, u_2, l_1, l_2 = params[0], params[1], params[2], params[3]
#print (params)
a, b = a[0], b[0]

temp = np.append(np.append(x, 1), 1)
prob_1_1 = ut.getProbability(dist_params, temp)

temp = np.append(np.append(x, -1), 1)
prob_m1_1 = ut.getProbability(dist_params, temp)

temp = np.append(np.append(x, 1), 0)
prob_1_0 = ut.getProbability(dist_params, temp)

temp = np.append(np.append(x, -1), 0)
prob_m1_0 = ut.getProbability(dist_params, temp)

if (prob_1_1 + prob_1_0 + prob_m1_0 + prob_m1_1) == 0:
print("Probability is 0.\n")
return 0

prob_y_1 = (prob_1_1 + prob_1_0) / (prob_1_1 + prob_1_0 + prob_m1_0 + prob_m1_1)
#print(prob_y_1)

prob_z_0 = (prob_m1_0 + prob_1_0) / (prob_1_1 + prob_1_0 + prob_m1_0 + prob_m1_1)
prob_z_1 = (prob_m1_1 + prob_1_1) / (prob_1_1 + prob_1_0 + prob_m1_0 + prob_m1_1)


probc_m1_0 = prob_m1_0 / (prob_1_1 + prob_1_0 + prob_m1_0 + prob_m1_1)
probc_m1_1 = prob_m1_1 / (prob_1_1 + prob_1_0 + prob_m1_0 + prob_m1_1)

c_0 = prob_y_1 - 0.5
c_1 = u_1 * (probc_m1_0 - a*prob_z_0) + u_2 * (probc_m1_1 - a*prob_z_1)
c_2 = l_1 * (- probc_m1_0 + b*prob_z_0) + l_2 * (- probc_m1_1 + b*prob_z_1)
if flag==1:
print(c_0, c_1, c_2, prob_1_1 + prob_1_0 + prob_m1_0 + prob_m1_1)

# c_1 = prob_z_0/z_0
# c_2 = prob_z_1/z_1

t = c_0 + c_1 + c_2
return t

def getFuncValue(self, dist_params, a,b, params, samples, z_0, z_1):
res = []
for x in samples:
t = abs(self.getValueForX(dist_params, a,b, params, samples, z_0, z_1, x, 0))
res.append(t)

exp = np.mean(res)
return exp

def getNumOfParams(self):
return 4

def getGamma(self, y_test, y_res, x_control_test):
pos_0 = 0
pos_1 = 0

z1_0 = 0
z1_1 = 0
for j in range(0,len(y_test)):
result = y_res[j]

if result == 1 and x_control_test[j] == 0:
z1_0 += 1
if result == 1 and x_control_test[j] == 1:
z1_1 += 1

actual = y_test[j]
if result == 1 and actual == -1 and x_control_test[j] == 0:
pos_0 += 1
if result == 1 and actual == -1 and x_control_test[j] == 1:
pos_1 += 1

pos_0 = float(pos_0)/z1_0
pos_1 = float(pos_1)/z1_1
if pos_0 == 0 or pos_1 == 0:
return 0
else:
return min(pos_0/pos_1 , pos_1/pos_0)


if __name__ == '__main__':
obj = FalseDiscovery()
obj.testPreprocessedData()
#obj.testSyntheticData()
def getExpectedGrad(self, dist, a, b, params, samples, mu, z_prior):
t, probc_m1_0, probc_m1_1, prob_z_0, prob_z_1 = self.getValueForX(dist,
a, b, params, z_prior, samples, return_probs=True)
res = np.vstack([probc_m1_0 - a*prob_z_0,
probc_m1_1 - a*prob_z_1,
-probc_m1_0 + b*prob_z_0,
-probc_m1_1 + b*prob_z_1])
res *= t / np.sqrt(t**2 + mu**2)
return np.mean(res, axis=1)

def getValueForX(self, dist, a, b, params, z_prior, x, return_probs=False):
u_1, u_2, l_1, l_2 = params
z_0, z_1 = 1-z_prior, z_prior

pos = np.ones(len(x))
prob_1_1 = self.prob(dist, np.c_[x, pos, pos])
prob_m1_1 = self.prob(dist, np.c_[x, -pos, pos])
prob_1_0 = self.prob(dist, np.c_[x, pos, np.zeros(len(x))])
prob_m1_0 = self.prob(dist, np.c_[x, -pos, np.zeros(len(x))])

total = prob_1_1 + prob_1_0 + prob_m1_0 + prob_m1_1
# if total == 0:
# return 0

prob_y_1 = (prob_1_1 + prob_1_0) / total
prob_z_0 = (prob_m1_0 + prob_1_0) / total
prob_z_1 = (prob_m1_1 + prob_1_1) / total

probc_m1_0 = prob_m1_0 / total
probc_m1_1 = prob_m1_1 / total

c_0 = prob_y_1 - 0.5
c_1 = u_1*(probc_m1_0 - a*prob_z_0) + u_2*(probc_m1_1 - a*prob_z_1)
c_2 = l_1*(-probc_m1_0 + b*prob_z_0) + l_2*(-probc_m1_1 + b*prob_z_1)

t = c_0 + c_1 + c_2
if return_probs:
return t, probc_m1_0, probc_m1_1, prob_z_0, prob_z_1
return t

def getFuncValue(self, dist, a, b, params, samples, z_prior):
return np.mean(np.abs(self.getValueForX(dist, a, b, params, z_prior,
samples)))

@property
def num_params(self):
return 4

def gamma(self, y_true, y_pred, sens):
pos_0 = y_pred[sens == 0] == 1
pos_1 = y_pred[sens == 1] == 1
if np.sum(pos_0) == 0 or np.sum(pos_1) == 0:
return 0
fdr_0 = np.sum(pos_0 & (y_true[sens == 0] == -1)) / np.sum(pos_0)
fdr_1 = np.sum(pos_1 & (y_true[sens == 1] == -1)) / np.sum(pos_1)
if fdr_0 == 0 or fdr_1 == 0:
return 0
return min(fdr_0/fdr_1, fdr_1/fdr_0)
Loading