Skip to content

Commit

Permalink
Release v0.3.1 (#109)
Browse files Browse the repository at this point in the history
* Change README logo if in dark mode (#95)

* Start transform tests & minor `RandomTimeShift` optimization (#94)

* Start transform tests & slight optimization in RandomTimeShift

* Add new length check for TimeCrop tests

* Code style

* Fixed name mangling.

* QAM/PSK Pulse shaping filter transition bandwidth corrected (#98)

* excess bandwidth is defined in porportion to signal bandwidth, not sampling rate, thus needs to be scaled by the samples per symbol

* filling in a comment to describe modification to code

* QAM/PSK Pulse shaping filter transition bandwidth corrected (#98)

* excess bandwidth is defined in porportion to signal bandwidth, not sampling rate, thus needs to be scaled by the samples per symbol

* filling in a comment to describe modification to code

* OFDM Modulator filter lengths estimated and bandwidth randomized (#99)

* * cutoff frequency for LPF now randomized when using 'rand_lpf'
* derives a transition bandwidth from the cutoff frequency
* uses filter length approximating function for the randomized LPF

* using filter estimation function for pre-computed LPF taps

* Tests for visual inspection. (#103)

* 91 create generation performance benchmarks for each modulation type (#104)

* Initial benchmarking code.

* Some benchmarks

* Adding initial benchmarks.

* Fix action.

---------

* 75 examine ofdm generation for potential speedups for sig53 (#105)

* Tests for visual inspection of modulation generation. (#102)

* Optimizations show significant improvement in generation speed.

* Nominal behavior after using scipy.

* Adding initial Dockerfile (#108)

* Incrementing version
  • Loading branch information
gvanhoy authored May 22, 2023
1 parent 9191375 commit f6edab8
Show file tree
Hide file tree
Showing 11 changed files with 286 additions and 76 deletions.
3 changes: 2 additions & 1 deletion .github/workflows/pytest.yml
Original file line number Diff line number Diff line change
Expand Up @@ -32,4 +32,5 @@ jobs:
- name: Test with pytest
run: |
pip install pytest
pytest --ignore-glob=*_figures.py
pytest --ignore-glob=*_figures.py --ignore-glob=*_benchmark.py
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -10,3 +10,4 @@ checkpoints/
lightning_logs/
*.pt
*.jpg
*.benchmarks/
15 changes: 15 additions & 0 deletions Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
FROM pytorch/pytorch:1.13.1-cuda11.6-cudnn8-runtime

ENV DEBIAN_FRONTEND=noninteractive

ADD torchsig/ /build/torchsig

ADD pyproject.toml /build/pyproject.toml

RUN pip3 install /build

RUN pip3 install notebook

WORKDIR /workspace/code

ADD examples/ /workspace/code/examples
16 changes: 15 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,8 @@
<p align="center">
<img src="docs/logo.png" alt="drawing" width="500"/>
<picture>
<source media="(prefers-color-scheme: dark)" srcset="docs/torchsig_logo_white_dodgerblue.png">
<img src="docs/logo.png" width="500">
</picture>
</p>

-----
Expand Down Expand Up @@ -40,6 +43,17 @@ cd torchsig
pip install .
```

## Using the Dockerfile
If you have Docker installed along with compatible GPUs and drivers, you can try:

```
docker build -t torchsig -f Dockerfile .
docker run -d --rm --network=host --shm-size=32g --gpus all --name torchsig_workspace torchsig tail -f /dev/null
docker exec torchsig_workspace jupyter notebook --allow-root --ip=0.0.0.0 --no-browser
```

Then use the URL in the output in your browser to run the examples and notebooks.

## License
---
TorchSig is released under the MIT License. The MIT license is a popular open-source software license enabling free use, redistribution, and modifications, even for commercial purposes, provided the license is included in all copies or substantial portions of the software. TorchSig has no connection to MIT, other than through the use of this license.
Expand Down
Binary file added docs/torchsig_logo_white_dodgerblue.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ readme = "README.md"
requires-python = ">=3.7"
license = {text = "MIT"}
dependencies = [
"torch==1.13.0",
"torch==1.13.1",
"torchvision",
"tqdm",
"numpy",
Expand Down
69 changes: 69 additions & 0 deletions tests/test_modulation_benchmark.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
from torchsig.datasets.synthetic import (
ConstellationDataset,
FSKDataset,
OFDMDataset,
default_const_map,
freq_map,
)
from matplotlib import pyplot as plt
import numpy as np
import pytest


def iterate_one_epoch(dataset):
for _ in dataset:
pass


@pytest.mark.benchmark(group="constellation")
@pytest.mark.parametrize("modulation_name", default_const_map.keys())
def test_generate_constellation_benchmark(benchmark, modulation_name):
dataset = ConstellationDataset(
[modulation_name],
num_iq_samples=4096,
num_samples_per_class=100,
iq_samples_per_symbol=2,
pulse_shape_filter=None,
random_pulse_shaping=False,
random_data=False,
use_gpu=False,
)
benchmark(iterate_one_epoch, dataset)


@pytest.mark.benchmark(group="fsk")
@pytest.mark.parametrize("modulation_name", freq_map.keys())
def test_generate_fsk_benchmark(benchmark, modulation_name):
dataset = FSKDataset(
[modulation_name],
num_iq_samples=4096,
num_samples_per_class=100,
iq_samples_per_symbol=2,
random_pulse_shaping=False,
random_data=False,
use_gpu=False,
)
benchmark(iterate_one_epoch, dataset)


num_subcarriers = (64, 72, 128, 180, 256, 300, 512, 600, 900, 1024, 1200, 2048)


@pytest.mark.benchmark(group="ofdm")
@pytest.mark.parametrize("num_subcarriers", num_subcarriers)
def test_generate_ofdm_benchmark(benchmark, num_subcarriers):
constellations = ("bpsk", "qpsk", "16qam", "64qam", "256qam", "1024qam")
sidelobe_suppression_methods = ("lpf", "win_start")
dataset = OFDMDataset(
constellations,
num_subcarriers=(num_subcarriers,),
num_iq_samples=4096,
num_samples_per_class=100,
sidelobe_suppression_methods=sidelobe_suppression_methods,
use_gpu=False,
)
benchmark(iterate_one_epoch, dataset)


if __name__ == "__main__":
pytest.main()
121 changes: 121 additions & 0 deletions tests/test_transforms.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
from unittest import TestCase
from torchsig.transforms.system_impairment.si import RandomTimeShift, TimeCrop
import numpy as np


class RandomTimeShiftTestCase(TestCase):
def test_random_time_shift_right(self):
rng = np.random.RandomState(0)
data = (
rng.rand(
16,
)
- 0.5
) + 1j * (
rng.rand(
16,
)
- 0.5
)
shift = 5
t = RandomTimeShift(
shift=shift,
)
new_data = t(data)
self.assertTrue(np.allclose(data[:-shift], new_data[shift:]))
self.assertTrue(np.allclose(new_data[:shift], np.zeros(shift)))

def test_random_time_shift_left(self):
rng = np.random.RandomState(0)
data = (
rng.rand(
16,
)
- 0.5
) + 1j * (
rng.rand(
16,
)
- 0.5
)
shift = -5
t = RandomTimeShift(
shift=shift,
)
new_data = t(data)
self.assertTrue(np.allclose(data[-shift:], new_data[:shift]))
self.assertTrue(np.allclose(new_data[shift:], np.zeros(np.abs(shift))))


class TimeCropTestCase(TestCase):
def test_time_crop_start(self):
rng = np.random.RandomState(0)
num_iq_samples = 16
data = (
rng.rand(
num_iq_samples,
)
- 0.5
) + 1j * (
rng.rand(
num_iq_samples,
)
- 0.5
)
length = 4
t = TimeCrop(
crop_type="start",
length=length,
)
new_data: np.ndarray = t(data)
self.assertTrue(np.allclose(data[:length], new_data))
self.assertTrue(new_data.shape[0] == length)

def test_time_crop_center(self):
rng = np.random.RandomState(0)
num_iq_samples = 16
data = (
rng.rand(
num_iq_samples,
)
- 0.5
) + 1j * (
rng.rand(
num_iq_samples,
)
- 0.5
)
length = 4
t = TimeCrop(
crop_type="center",
length=length,
)
new_data: np.ndarray = t(data)
extra_samples = num_iq_samples - length
self.assertTrue(
np.allclose(data[extra_samples // 2 : -extra_samples // 2], new_data)
)
self.assertTrue(new_data.shape[0] == length)

def test_time_crop_end(self):
rng = np.random.RandomState(0)
num_iq_samples = 16
data = (
rng.rand(
num_iq_samples,
)
- 0.5
) + 1j * (
rng.rand(
num_iq_samples,
)
- 0.5
)
length = 4
t = TimeCrop(
crop_type="end",
length=length,
)
new_data: np.ndarray = t(data)
self.assertTrue(np.allclose(data[-length:], new_data))
self.assertTrue(new_data.shape[0] == length)
2 changes: 1 addition & 1 deletion torchsig/__init__.py
Original file line number Diff line number Diff line change
@@ -1 +1 @@
__version__ = "0.3.0"
__version__ = "0.3.1"
Loading

0 comments on commit f6edab8

Please sign in to comment.