Skip to content
/ FCVG Public

Official implementation of the paper "Generative Inbetweening through Frame-wise Conditions-Driven Video Generation"

Notifications You must be signed in to change notification settings

Tian-one/FCVG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Generative Inbetweening through Frame-wise Conditions-Driven Video Generation

Tianyi Zhu, Dongwei Ren, Qilong Wang, Xiaohe Wu, Wangmeng Zuo

This repository is the official PyTorch implementation of "Generative Inbetweening through Frame-wise Conditions-Driven Video Generation".

arXiv Project Page

🖼️ Results

Input starting frame Input ending frame Inbetweening results

⚙️ Run inference demo

1. Setup environment

git clone https://github.com/Tian-one/FCVG.git
cd FCVG
conda create -n FCVG python=3.10.14
conda activate FCVG
pip install -r requirements.txt

2. Download models

  1. Download the Gluestick weights and put them in './models/resources'.

    wget https://github.com/cvg/GlueStick/releases/download/v0.1_arxiv/checkpoint_GlueStick_MD.tar -P models/resources/weights
    
  2. Download the DWPose pretrained weights dw-ll_ucoco_384.onnx and yolox_l.onnx here, then put them in './checkpoints/dwpose'.

  3. Download our FCVG model here, put them in './checkpoints'

3. Run the inference script

Run inference with default setting:

bash demo.sh

or run

python demo_FCVG.py 

--pretrained_model_name_or_path: pretrained SVD model folder, we fintune models based on SVD-XT1.1
--controlnext_path: ControlNeXt model path
--unet_path: finetuned unet model path
--image1_path: start frame path
--image2_path: end frame path
--output_dir: folder path to save the results
--control_weight: frame-wise condition control weight, default is 1.0
--num_inference_steps: diffusion denoise steps, default is 25
--height : input frames height, default is 576
--width: input frames width, default is 1024

✨ News/TODO

  • Inference code of FCVG
  • Release Datasets

🖊️ Citation

@article{zhu2024generative,
  title={Generative Inbetweening through Frame-wise Conditions-Driven Video Generation},
  author={Zhu, Tianyi and Ren, Dongwei and Wang, Qilong and Wu, Xiaohe and Zuo, Wangmeng},
  journal={arXiv preprint arXiv:2412.11755},
  year={2024}
}

💞 Acknowledgements

Thanks for the work of ControlNeXt, svd_keyframe_interpolation, GlueStick, DWPose. Our code is based on the implementation of them.

About

Official implementation of the paper "Generative Inbetweening through Frame-wise Conditions-Driven Video Generation"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published