Skip to content

My Bachelor thesis based on existing framework: "search-visualisation"

Notifications You must be signed in to change notification settings

TheBlackDragon4/search-visualization

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 

Repository files navigation

Search-Visualization

Search-Visualization is a framework that can be used to implement and visualize AI algorithms. The Search-Visualization uses two perspectives to represent the algorithmic behavior. On the left hand side a search tree is drawn that shows which search node was expanded by the algorithm. On the right hand side the problem with a representation of the state is shown. AI algorithms and search threads are independent of each other. The visualization is done via an entity component system.

Features:

  • Provides Classes for AI and search algorithms
  • Representation and implementation of two games for AI to work with
  • Construction and representation of search trees according to the algorithm data structure
  • GUI with control elements for visualization control
  • Administrators can view all pictures on one page with the user inserted data
  • Pausing and resuming algorithms
  • Representation and implementation of two MapColoringProblems (Australia and General)
  • Abstracted classes for CSP problems and CSP search algorithms
  • Representation and implementation of CSP search algorithm (BacktrackingArcConsistancy3Search)

Dependencies:

  • Java 17
  • JavaFX 21.0.2

Installation:

You should see the following:

empty search-visualization winow Picture 1: Empty window

Select a problem and a search-algorithm and press the START-Button. Press the STEP-Button to proceed the visualization. proceeding search-visualization window Picture 2: Proceeding window

Select a problem and the search-algorithm DepthFirstSearch and press the START-Button. Press the STEP-Button to proceed the visualization. proceeding search-visualization window Picture 3: Depth first search

Implement your own AI-Algorithm:

Navigate to the ai_algorithm package inside go to search create a new class with your own algorithm name e.g. DepthFirstSearchExplored.

ai algorithm package

Picture 4: Package organization

package ai_algorithm.search;

import ai_algorithm.ExploredSet;
import ai_algorithm.Frontier;
import ai_algorithm.Path;
import ai_algorithm.SearchNode;
import ai_algorithm.problems.State;
import application.debugger.Debugger;

public class DepthFirstSearchExplored extends SearchAlgorithm {
	@Override
	public Path search() {
		SearchNode start = new SearchNode(null, problem.getInitialState(), 0, null);
		Frontier frontier = new Frontier();
		ExploredSet explored = new ExploredSet();
		explored.add(start);
		Debugger.pause();
		if (this.problem.isGoalState(start.getState())) {
			return start.getPath();
		}
		frontier.add(start);
		Debugger.pause();
		while (!frontier.isEmpty()) {
			SearchNode node = frontier.removeLast();
			Debugger.pause();
			System.out.println(node);
			for (SearchNode child : node.expand()) {
				State state = child.getState();
				if (problem.isGoalState(state)) {
					Debugger.pause("Finished");
					return child.getPath();
				}
				if (!explored.contains(state)) {
					Debugger.pause();
					explored.add(child);
					frontier.add(child);
				}
			}
		}
		return null;
	}
}

As a last step you have to announce your algorithm to the framework by adding the algorithms name to the algorithm SearchAndProblemRegister.

public class SearchAndProblemRegister {
...
	public static String[] searchAlgorithms = { //
			DepthFirstSearch.class.getName(), //
			DepthFirstSearchExplored.class.getName(), //
			RecursiveDepthSearch.class.getName(), //
			BreadthFirstSearch.class.getName(), // <<<your new algorithm
			BidirectionalBreadthFirstSearch.class.getName(), //
			ManualSearch.class.getName()//
	};
...
}

Start the framework and select your new algorithm. The selection sequence for the framework is shown in picture 2.

Implement your own CSP Search Algorithm

Navigate to the ai_algorithm package inside go to search\csp create a new class with your own csp algorithm name e.g. BacktrackingArcConsistancy3Search.

package ai_algorithm.search.csp;

import ai_algorithm.Frontier;
import ai_algorithm.Path;
import ai_algorithm.SearchNode;
import ai_algorithm.problems.CspProblem;
import ai_algorithm.problems.CspState;
import ai_algorithm.problems.mapColoring.Pair;
import application.debugger.Debugger;
import ecs.GameObjectRegistry;

import java.util.*;

public class BacktrackingArcConsistancy3Search extends CspSearchAlgorithm {

    public BacktrackingArcConsistancy3Search() {
        super();
    }

    public BacktrackingArcConsistancy3Search(CspProblem problem) {
        super(problem);
    }

    @Override
    public Path search() {
        SearchNode start = new SearchNode(null, problem.getInitialState(), 0, null);
        Frontier frontier = new Frontier();
        if (this.problem.isGoalState(start.getState())) {
            return start.getPath();
        }

        // Frontier is only used for coloring nodes correctly
        frontier.add(start);
        Debugger.pause();

        Path result = backtrack(start, frontier);
        if (result != null) {
            return result;
        }

        Debugger.pause("No Solution found");
        return null;
    }

    private Path backtrack(SearchNode searchNode, Frontier frontier) {
        frontier.remove(searchNode);
        if (this.problem.isGoalState(searchNode.getState())) {
            GameObjectRegistry.registerForStateChange(searchNode);
            Debugger.pause("Finished");
            return searchNode.getPath();
        }

        CspState cspState = (CspState) searchNode.getState();
        Map<String, String> assignments = cspState.getAssignments();
        boolean inference = arcConsistency3(this.problem.getContraints(), cspState.getDomains());
        if( !inference ) {
            GameObjectRegistry.registerForStateChange(searchNode);
            return null;
        }

        String var = selectUnassignedVariable(assignments);
        List<String> values = orderDomainValues(var, cspState, false);
        // For every "action" of Variable var
        for (SearchNode child : expand(searchNode, frontier, var, values)) {
            Path result = backtrack(child, frontier);
            // If a solution was found, return it
            if( result != null ) {
                GameObjectRegistry.registerForStateChange(searchNode);
                return result;
            }
            // Otherwise, try next value
        }
        GameObjectRegistry.registerForStateChange(searchNode);
        Debugger.pause("No Solution found");
        return null;
    }

    private String selectUnassignedVariable(Map<String, String> assignments) {
        String result = "";
        Boolean inAssignments = false;
        if (assignments.size() < this.problem.getVariables().size()) {
            for (String variable : this.problem.getVariables()) {
                if ((!assignments.containsKey(variable)) && !inAssignments){
                    result = variable;
                    inAssignments = true;
                }
            }
        }
        return result;
    }

    private List<String> orderDomainValues(String var, CspState state, boolean allowOnlyValidValues) {
        List<String> resultDomain = new ArrayList<>();

        if( allowOnlyValidValues ) {
            resultDomain.addAll(state.getDomain(var));
        } else {
            resultDomain.addAll(this.problem.getDomain().get(var));
        }
        Collections.shuffle(resultDomain);
        return resultDomain;
    }

    public boolean arcConsistency3(List<Pair<String, String>> contraints,
                                   Map<String, List<String>> domains) {
        List<Pair<String, String>> constraintCopy = new ArrayList<>(contraints);
        while (!constraintCopy.isEmpty()) {
            Pair<String, String> arc = constraintCopy.remove(0);
            List<String> neighbors = problem.getNeighbors(arc.getFirst());
            if (neighbors != null && revise(arc, domains)) {
                if (domains.get(arc.getFirst()).isEmpty()) {
                    System.out.println("No Solution");
                    return false;
                }
                for (String xk : neighbors) {
                    constraintCopy.add(new Pair<>(xk, arc.getFirst()));
                }
            }
        }
        return true;
    }

    private boolean revise(Pair<String, String> arc,
                           Map<String, List<String>> domain) {
        boolean revise = false;
        String xi = arc.getFirst();
        String xj = arc.getSecond();

        List<String> domain_i = domain.get(xi);
        List<String> domain_j = domain.get(xj);

        List<String> invalidValues = new ArrayList<>();
        for (String vi : domain_i) {
            boolean foundValidValue = false;
            for (String vj : domain_j) {
                Map<String, String> newAssignment = Map.of(xi, vi, xj, vj);
                // If the assignment is satisfied, this value for Xi is fine
                if (isSatisfiedWith(newAssignment, arc)) {
                    foundValidValue = true;
                    break;
                }
            }
            if (!foundValidValue) {
                invalidValues.add(vi);
                revise = true;
            }
        }
        for (String invalidValue : invalidValues) {
            domain_i.remove(invalidValue);
        }
        return revise;
    }

    public boolean isSatisfiedWith(Map<String, String> assignment, Pair<String, String> arc) {
        String val1 = assignment.get(arc.getFirst()); // get the value of the first variable
        String val2 = assignment.get(arc.getSecond());
        if (val1.equals(val2)) {
            return false;
        }
        return true;
    }
}

The abstract class CspSearchAlgorithm is implemented by the csp algorithms and serves as the superclass

package ai_algorithm.search.csp;

import ai_algorithm.Frontier;
import ai_algorithm.Path;
import ai_algorithm.SearchNode;
import ai_algorithm.SearchNodeMetadataObject;
import ai_algorithm.problems.CspProblem;
import ai_algorithm.problems.CspState;
import ai_algorithm.problems.State;
import ai_algorithm.search.SearchAlgorithm;
import application.debugger.Debugger;
import ecs.GameObjectRegistry;

import java.util.List;

public abstract class CspSearchAlgorithm extends SearchAlgorithm {

	CspProblem problem;

	public CspSearchAlgorithm() {

	}

	public CspSearchAlgorithm(CspProblem problem) {
		this.problem = problem;
	}

	public void setProblem(CspProblem problem) {
		this.problem = problem;
	}

	public abstract Path search();

	public List<SearchNode> expand(SearchNode searchNode, Frontier frontier, String variable, List<String> values) {
		// Start visualization
		SearchNodeMetadataObject.setExpandingSearchnode(searchNode);
		Debugger.pause("Expanding: " + this);
		// End visualization

		if (searchNode.getChildren() != null && !searchNode.getChildren().isEmpty() ) {
			return searchNode.getChildren(); // <-- only expand children if they don't already exist
		}

		CspState state = (CspState) searchNode.getState();
		CspProblem prob = (CspProblem)state.getProblem();

		for (String value : values) {
			String action = variable + "=" + value;
			State succState = prob.getSuccessor(state, action);
			// Create new SearchNode
			SearchNode succ = new SearchNode(searchNode, succState,
					searchNode.getPathCost() + prob.getCost(state, action, succState), action);
			searchNode.getChildren().add(succ);
			frontier.add(succ);
			Debugger.pause("EXPANSION: " + action);
		}

		// Start visualization
		SearchNodeMetadataObject.setExpandingSearchnode(null);
		GameObjectRegistry.registerForStateChange(searchNode);
		// End visualization
		return searchNode.getChildren();
	}
}

The next step you have to announce your algorithm to the framework by adding the algorithms name to the algorithm SearchAndProblemRegister.

public class SearchAndProblemRegister {
...
	public static String[] searchAlgorithms = { //
		DepthFirstSearch.class.getName(), //
		DepthFirstSearchExplored.class.getName(), //
		RecursiveDepthSearch.class.getName(), //
		BreadthFirstSearch.class.getName(), //
		BidirectionalBreadthFirstSearch.class.getName(), //
		ManualSearch.class.getName(),//
	};

	public static String[] cspSearchAlgorithm = {
		BacktrackingArcConsistancy3Search.class.getName()//
	};
...
}

How does it work:

Like many Game Engines the Search-Visualization framework is based on an Entity-Component-Sytem. Therefore it uses Game-Objects to represent all Objects that are part of a search algorithm. The components can be give to a Game-Object to add functionality. EntityComponentSystem Picture 5: Components are assigned to Game-Objects

The visualization is seperated into two threads the Search-Thread and the Visualization-Thread. The connecting element between them are visitors that are managed by the Game-Object-Registry to be applied on the Game-Objects. FrameworkeArchitecture Picture 6: Broad architecture of the framework

The hierarchy of a CspProblem is based on the superclass Problem to ensure the possibility of displaying further CSPs apart from the MapColoringProblem. A so-called AbstractMapColoringProblem is in turn based on the CspProblem superclass and implements the functions to define only the Variables, Domains and Constraints within individual MapColoringProblems. AbstractClassHierachy Picture 7: Abstract Class Hierachy for CSPs and MapColoringProblems

For more information on this topic read the full documentation: full java doc.

Results

Here are some pictures generated by the Search-Visualization:

Depth First Search

DepthFirstSearch Picture 8: Depth First Search

Depth First Search with Explored Set

DepthFirstSearchExploredSet Picture 9: Depth First Search with Explored Set

Recursive Depth Search

RecursiveDepthSearch Picture 10: Recursive Depth Search

Breadth First Search

BreadthFirstSearch Picture 11: Breadth First Search

Bidirectional Breadth First Search

BidirectionalBreadthFirstSearch Picture 12: Bidirectional Breadth First Search

Manual Search

ManualSearch Picture 13: Manual Search

Results of MapColoringProblems

Here are some pictures from the MapColoringProblems generated by the Search-Visualization:

MapColoringProblem Australia

MapColoringProblem Australia Picture 14: MapColoringProblem Australia with BacktrackingArcConsistancy3Search

MapColoringProblem Australia Picture 15: MapColoringProblem Australia with DepthFirstSearch

MapColoringProblem General

MapColoringProblem General Picture 16: MapColoringProblem General BacktrackingArcConsistancy3Search

MapColoringProblem General Picture 17: MapColoringProblem General with DepthFirstSearch

Start the framework and select your new problem and algorithm. The selection sequence for the framework is shown in picture 2.

To-Do's

  • FIX: Sliding Tile Problem Visitors
  • FIX: Overlapping search nodes in some trees
  • CHANGE: CSS Theme
  • CHANGE: Userinterface
  • ADD: More problems/games
  • ADD: More CSP problems/games
  • ADD: More MapColoringProblems/games
  • ADD: More search algorithms
  • ADD: More CSP search algorithms

About

My Bachelor thesis based on existing framework: "search-visualisation"

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Java 99.9%
  • CSS 0.1%