Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add GLU #4283

Merged
merged 9 commits into from
Oct 19, 2022
Merged

Add GLU #4283

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions docs/developer-guide/operators.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@
* [Exp](#exp)
* [Flatten](#flatten)
* [GELU](#gelu)
* [GLU](#glu)
* [Gemm](#gemm)
* [GroupNorm](#groupnorm)
* [GRU](#gru)
Expand Down Expand Up @@ -784,6 +785,22 @@ else y = 0.5 * x * erfc(-0.70710678 * x)
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | fast_gelu | int | 0 | use approximation |

# GLU

If axis < 0, we use axis = x.dims + axis

GLU(a,b)=a⊗σ(b)

where a is the first half of the input matrix and b is the second half.

axis specifies the dimension to split the input

* one_blob_only

| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | axis | int | 0 | |

# Gemm
```
a = transA ? transpose(x0) : x0
Expand Down
1 change: 1 addition & 0 deletions src/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -156,6 +156,7 @@ ncnn_add_layer(Deconvolution3D)
ncnn_add_layer(DeconvolutionDepthWise3D)
ncnn_add_layer(Einsum)
ncnn_add_layer(DeformableConv2D)
ncnn_add_layer(GLU)

if(NCNN_VULKAN)
ncnn_add_shader(${CMAKE_CURRENT_SOURCE_DIR}/convert_ycbcr.comp)
Expand Down
220 changes: 220 additions & 0 deletions src/layer/glu.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,220 @@
// Copyright (c) 2022 Xiaomi Corp. (author: Fangjun Kuang)
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this
// file except in compliance with the License. You may obtain a copy of the
// License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.

#include "glu.h"

#include <math.h>

namespace ncnn {

GLU::GLU()
{
one_blob_only = true;
support_inplace = false;
}

int GLU::load_param(const ParamDict& pd)
{
axis = pd.get(0, 0);

return 0;
}

int GLU::forward(const Mat& bottom_blob, Mat& top_blob,
const Option& opt) const
{
int dims = bottom_blob.dims;
int positive_axis = axis < 0 ? dims + axis : axis;

if (dims == 1)
{ // ignore axis
int w = bottom_blob.w;
int out_w = w / 2;
top_blob.create(out_w, sizeof(float), opt.blob_allocator);

const float* in_ptr = bottom_blob;
float* out_ptr = top_blob;

#pragma omp parallel for num_threads(opt.num_threads)
for (int x = 0; x < out_w; ++x)
{
float sigmoid = static_cast<float>(1.f / (1.f + expf(-in_ptr[x + out_w])));

out_ptr[x] = in_ptr[x] * sigmoid;
}

return 0;
} // if (dims == 1)

if (dims == 2 && positive_axis == 0)
{
int w = bottom_blob.w;
int h = bottom_blob.h;
int out_w = w;
int out_h = h / 2;
top_blob.create(out_w, out_h, sizeof(float), opt.blob_allocator);

int offset = out_w * out_h;

#if 0
// this one is equivalent to the else branch. It is more readable
// but less efficient
#pragma omp parallel for num_threads(opt.num_threads)
for (int y = 0; y < out_h; ++y) {
const float *in_ptr = bottom_blob.row(y);
float *out_ptr = top_blob.row(y);

for (int x = 0; x < w; ++x) {
float sigmoid =
static_cast<float>(1.f / (1.f + exp(-in_ptr[x + offset])));

out_ptr[x] = in_ptr[x] * sigmoid;
}
}
#else
int size = offset;
const float* in_ptr = bottom_blob;
float* out_ptr = top_blob;

#pragma omp parallel for num_threads(opt.num_threads)
for (int i = 0; i < size; ++i)
{
float sigmoid = static_cast<float>(1.f / (1.f + exp(-in_ptr[i + offset])));
out_ptr[i] = in_ptr[i] * sigmoid;
}
#endif

return 0;
} // if (dims == 2 && positive_axis == 0)

if (dims == 2 && positive_axis == 1)
{
int w = bottom_blob.w;
int h = bottom_blob.h;
int out_w = w / 2;
int out_h = h;

top_blob.create(out_w, out_h, sizeof(float), opt.blob_allocator);

#pragma omp parallel for num_threads(opt.num_threads)
for (int y = 0; y < h; ++y)
{
const float* in_ptr = bottom_blob.row(y);
float* out_ptr = top_blob.row(y);

for (int x = 0; x < out_w; ++x)
{
float sigmoid = static_cast<float>(1.f / (1.f + exp(-in_ptr[x + out_w])));
out_ptr[x] = in_ptr[x] * sigmoid;
}
}

return 0;
} // if (dims == 2 && positive_axis == 1)

if (dims == 3 && positive_axis == 0)
{
int w = bottom_blob.w;
int h = bottom_blob.h;
int c = bottom_blob.c;

int out_w = w;
int out_h = h;
int out_c = c / 2;

top_blob.create(out_w, out_h, out_c, sizeof(float), opt.blob_allocator);

int offset = out_c * bottom_blob.cstep;
int size = w * h;

#pragma omp parallel for num_threads(opt.num_threads)
for (int q = 0; q < out_c; ++q)
{
const float* in_ptr = bottom_blob.channel(q);
float* out_ptr = top_blob.channel(q);

for (int i = 0; i < size; ++i)
{
float sigmoid = static_cast<float>(1.f / (1.f + exp(-in_ptr[i + offset])));
out_ptr[i] = in_ptr[i] * sigmoid;
}
}
return 0;
} // if (dims == 3 && positive_axis == 0) {

if (dims == 3 && positive_axis == 1)
{
int w = bottom_blob.w;
int h = bottom_blob.h;
int c = bottom_blob.c;

int out_w = w;
int out_h = h / 2;
int out_c = c;

top_blob.create(out_w, out_h, out_c, sizeof(float), opt.blob_allocator);

int offset = out_h * out_w;
int size = offset;

#pragma omp parallel for num_threads(opt.num_threads)
for (int q = 0; q < c; ++q)
{
const float* in_ptr = bottom_blob.channel(q);
float* out_ptr = top_blob.channel(q);

for (int i = 0; i < size; ++i)
{
float sigmoid = static_cast<float>(1.f / (1.f + exp(-in_ptr[i + offset])));
out_ptr[i] = in_ptr[i] * sigmoid;
}
}
return 0;
} // if (dims == 3 && positive_axis == 1)

if (dims == 3 && positive_axis == 2)
{
int w = bottom_blob.w;
int h = bottom_blob.h;
int c = bottom_blob.c;

int out_w = w / 2;
int out_h = h;
int out_c = c;

top_blob.create(out_w, out_h, out_c, sizeof(float), opt.blob_allocator);

#pragma omp parallel for num_threads(opt.num_threads)
for (int q = 0; q < c; ++q)
{
const float* in_ptr = bottom_blob.channel(q);
float* out_ptr = top_blob.channel(q);
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < out_w; ++x)
{
float sigmoid = static_cast<float>(1.f / (1.f + exp(-in_ptr[x + out_w])));
out_ptr[x] = in_ptr[x] * sigmoid;
}
in_ptr += w;
out_ptr += out_w;
}
}
return 0;
} // if (dims == 3 && positive_axis == 2)

return -100;
}

} // namespace ncnn
38 changes: 38 additions & 0 deletions src/layer/glu.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
// Copyright (c) 2022 Xiaomi Corp. (author: Fangjun Kuang)
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this
// file except in compliance with the License. You may obtain a copy of the
// License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.

#ifndef LAYER_GLU_H
#define LAYER_GLU_H

#include "layer.h"

namespace ncnn {

class GLU : public Layer
{
public:
GLU();

virtual int load_param(const ParamDict& pd);

virtual int forward(const Mat& bottom_blob, Mat& top_blob,
const Option& opt) const;

public:
int axis;
};

} // namespace ncnn

#endif // LAYER_GLU_H
1 change: 1 addition & 0 deletions tests/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -86,6 +86,7 @@ ncnn_add_layer_test(ELU)
ncnn_add_layer_test(ExpandDims)
ncnn_add_layer_test(Flatten)
ncnn_add_layer_test(GELU)
ncnn_add_layer_test(GLU)
ncnn_add_layer_test(Gemm)
ncnn_add_layer_test(GroupNorm)
ncnn_add_layer_test(GRU)
Expand Down
69 changes: 69 additions & 0 deletions tests/test_glu.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
// Copyright (c) 2022 Xiaomi Corp. (author: Fangjun Kuang)
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.

#include "layer/glu.h"
#include "testutil.h"

static int test_glu(const ncnn::Mat& a, int axis)
{
ncnn::ParamDict pd;
pd.set(0, axis);

std::vector<ncnn::Mat> weights(0);

int ret = test_layer<ncnn::GLU>("GLU", pd, weights, a);
if (ret != 0)
{
fprintf(stderr, "test_glu failed a.dims=%d a=(%d %d %d) axis=%d\n", a.dims, a.w, a.h, a.c, axis);
}

return ret;
}

static int test_glu_0()
{
return 0
|| test_glu(RandomMat(6, 7, 24), 0)
|| test_glu(RandomMat(6, 8, 24), 1)
|| test_glu(RandomMat(6, 8, 24), 2)
|| test_glu(RandomMat(36, 7, 22), 0)
|| test_glu(RandomMat(5, 256, 23), -2)
|| test_glu(RandomMat(129, 9, 60), 2)
|| test_glu(RandomMat(129, 9, 30), -1);
}

static int test_glu_1()
{
return 0
|| test_glu(RandomMat(10, 24), 0)
|| test_glu(RandomMat(7, 24), 1)
|| test_glu(RandomMat(128, 22), 0)
|| test_glu(RandomMat(128, 256), 1);
}

static int test_glu_2()
{
return 0
|| test_glu(RandomMat(10), 0)
|| test_glu(RandomMat(20), 0)
|| test_glu(RandomMat(128), 0);
}

int main()
{
SRAND(7767517);

return 0
|| test_glu_0()
|| test_glu_1()
|| test_glu_2();
}
3 changes: 2 additions & 1 deletion tools/pnnx/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -488,6 +488,7 @@ TORCH_LIBRARY(upfirdn2d_op, m) {
|nn.FractionalMaxPool2d | |
|nn.FractionalMaxPool3d | |
|nn.GELU | :heavy_check_mark: | :heavy_check_mark: |
|nn.GLU | :heavy_check_mark: | :heavy_check_mark: |
|nn.GroupNorm | :heavy_check_mark: | :heavy_check_mark: |
|nn.GRU | :heavy_check_mark: | :heavy_check_mark: |
|nn.GRUCell | |
Expand Down Expand Up @@ -603,7 +604,7 @@ TORCH_LIBRARY(upfirdn2d_op, m) {
|F.fractional_max_pool2d | |
|F.fractional_max_pool3d | |
|F.gelu | :heavy_check_mark: | :heavy_check_mark: |
|F.glu | |
|F.glu | :heavy_check_mark: | :heavy_check_mark: |
|F.grid_sample | :heavy_check_mark: |
|F.group_norm | :heavy_check_mark: | :heavy_check_mark: |
|F.gumbel_softmax | |
Expand Down
Loading