-
Notifications
You must be signed in to change notification settings - Fork 4.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
test x86 arm convolution oom (#5492)
* skip mips loongarch riscv oom test atm * test softmax oom
- Loading branch information
Showing
6 changed files
with
789 additions
and
337 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
// Tencent is pleased to support the open source community by making ncnn available. | ||
// | ||
// Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. | ||
// | ||
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except | ||
// in compliance with the License. You may obtain a copy of the License at | ||
// | ||
// https://opensource.org/licenses/BSD-3-Clause | ||
// | ||
// Unless required by applicable law or agreed to in writing, software distributed | ||
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR | ||
// CONDITIONS OF ANY KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations under the License. | ||
|
||
#include "testutil.h" | ||
|
||
static int test_convolution_oom(int w, int h, int c, int outch, int kernel, int dilation, int stride, int pad, int bias) | ||
{ | ||
ncnn::Mat a = RandomMat(w, h, c); | ||
|
||
ncnn::ParamDict pd; | ||
pd.set(0, outch); | ||
pd.set(1, kernel); | ||
pd.set(2, dilation); | ||
pd.set(3, stride); | ||
pd.set(4, pad); | ||
pd.set(5, bias); | ||
pd.set(6, outch * c * kernel * kernel); | ||
|
||
int activation_type = RAND() % 7; // 0 1 2 3 4 5 6 | ||
ncnn::Mat activation_params(2); | ||
activation_params[0] = (activation_type == 6) ? RandomFloat(0, 1) : RandomFloat(-1, 0); // alpha | ||
activation_params[1] = RandomFloat(0, 1); // beta | ||
pd.set(9, activation_type); | ||
pd.set(10, activation_params); | ||
|
||
std::vector<ncnn::Mat> weights(bias ? 2 : 1); | ||
weights[0] = RandomMat(outch * c * kernel * kernel); | ||
if (bias) | ||
weights[1] = RandomMat(outch); | ||
|
||
int ret = test_layer_oom("Convolution", pd, weights, a); | ||
if (ret != 0) | ||
{ | ||
fprintf(stderr, "test_convolution_oom failed w=%d h=%d c=%d outch=%d kernel=%d dilation=%d stride=%d pad=%d bias=%d act=%d actparams=[%f,%f]\n", w, h, c, outch, kernel, dilation, stride, pad, bias, activation_type, activation_params[0], activation_params[1]); | ||
return ret; | ||
} | ||
|
||
return ret; | ||
} | ||
|
||
static int test_convolution_0() | ||
{ | ||
return 0 | ||
|| test_convolution_oom(9, 7, 31, 63, 1, 1, 1, 0, 1) | ||
|| test_convolution_oom(9, 7, 31, 63, 3, 1, 1, 1, 1); | ||
} | ||
|
||
#if NCNN_INT8 | ||
static int test_convolution_oom_int8(int w, int h, int c, int outch, int kernel, int dilation, int stride, int pad, int bias, bool requant = false) | ||
{ | ||
ncnn::Mat a = RandomMat(w, h, c); | ||
|
||
ncnn::ParamDict pd; | ||
pd.set(0, outch); | ||
pd.set(1, kernel); | ||
pd.set(2, dilation); | ||
pd.set(3, stride); | ||
pd.set(4, pad); | ||
pd.set(5, bias); | ||
pd.set(6, outch * c * kernel * kernel); | ||
pd.set(8, requant ? 101 : 1); // int8_scale_term | ||
|
||
int activation_type = RAND() % 7; // 0 1 2 3 4 5 6 | ||
ncnn::Mat activation_params(2); | ||
activation_params[0] = (activation_type == 6) ? RandomFloat(0, 1) : RandomFloat(-1, 0); // alpha | ||
activation_params[1] = RandomFloat(0, 1); // beta | ||
pd.set(9, activation_type); | ||
pd.set(10, activation_params); | ||
|
||
std::vector<ncnn::Mat> weights(bias ? 5 : 4); | ||
weights[0] = RandomMat(outch * c * kernel * kernel); | ||
|
||
ncnn::Mat weight_scales = scales_mat(weights[0], outch, c * kernel * kernel, c * kernel * kernel); | ||
ncnn::Mat input_scales = scales_mat(a, 1, w * h * c, a.cstep); | ||
ncnn::Mat top_scales = requant ? scales_mat(a, 1, w * h * c, a.cstep) : ncnn::Mat(); | ||
|
||
if (kernel == 3 && dilation == 1 && stride == 1) | ||
{ | ||
// test for 6bit quant | ||
for (int i = 0; i < weight_scales.w; i++) | ||
weight_scales[i] = weight_scales[i] / 4.f; | ||
} | ||
|
||
if (bias) | ||
{ | ||
weights[1] = RandomMat(outch); | ||
weights[2] = weight_scales; | ||
weights[3] = input_scales; | ||
weights[4] = top_scales; | ||
} | ||
else | ||
{ | ||
weights[1] = weight_scales; | ||
weights[2] = input_scales; | ||
weights[3] = top_scales; | ||
} | ||
|
||
int flag = TEST_LAYER_DISABLE_GPU_TESTING; | ||
int ret = test_layer_oom("Convolution", pd, weights, a, flag); | ||
if (ret != 0) | ||
{ | ||
fprintf(stderr, "test_convolution_oom_int8 failed w=%d h=%d c=%d outch=%d kernel=%d dilation=%d stride=%d pad=%d bias=%d requant=%d act=%d actparams=[%f,%f]\n", w, h, c, outch, kernel, dilation, stride, pad, bias, requant, activation_type, activation_params[0], activation_params[1]); | ||
return ret; | ||
} | ||
|
||
return ret; | ||
} | ||
|
||
static int test_convolution_1() | ||
{ | ||
return 0 | ||
|| test_convolution_oom_int8(9, 7, 31, 63, 1, 1, 1, 0, 1) | ||
|| test_convolution_oom_int8(9, 7, 31, 63, 3, 1, 1, 1, 1); | ||
} | ||
|
||
static int test_convolution_2() | ||
{ | ||
return 0 | ||
|| test_convolution_oom_int8(9, 7, 31, 63, 1, 1, 1, 0, 1, true) | ||
|| test_convolution_oom_int8(9, 7, 31, 63, 3, 1, 1, 1, 1, true); | ||
} | ||
#endif // NCNN_INT8 | ||
|
||
int main() | ||
{ | ||
SRAND(7767517); | ||
|
||
#if __mips__ || __loongarch64 || __riscv | ||
// TODO | ||
return 0; | ||
#endif | ||
|
||
#if NCNN_INT8 | ||
return test_convolution_0() || test_convolution_1() || test_convolution_2(); | ||
#else | ||
return test_convolution_0(); | ||
#endif | ||
} |
Oops, something went wrong.