-
Notifications
You must be signed in to change notification settings - Fork 4.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
272 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,234 @@ | ||
// Tencent is pleased to support the open source community by making ncnn available. | ||
// | ||
// Copyright (C) 2022 THL A29 Limited, a Tencent company. All rights reserved. | ||
// | ||
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except | ||
// in compliance with the License. You may obtain a copy of the License at | ||
// | ||
// https://opensource.org/licenses/BSD-3-Clause | ||
// | ||
// Unless required by applicable law or agreed to in writing, software distributed | ||
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR | ||
// CONDITIONS OF ANY KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations under the License. | ||
|
||
#include "matmul_x86.h" | ||
|
||
#include "layer_type.h" | ||
|
||
namespace ncnn { | ||
|
||
MatMul_x86::MatMul_x86() | ||
{ | ||
gemm = 0; | ||
} | ||
|
||
int MatMul_x86::create_pipeline(const Option& opt) | ||
{ | ||
gemm = ncnn::create_layer(ncnn::LayerType::Gemm); | ||
|
||
ncnn::ParamDict pd; | ||
pd.set(2, 0); // transA | ||
pd.set(3, transB); // transB | ||
pd.set(4, 0); // constantA | ||
pd.set(5, 0); // constantB | ||
pd.set(6, 1); // constantC | ||
pd.set(7, 0); // M = outch | ||
pd.set(8, 0); // N = size | ||
pd.set(9, 0); // K = maxk*inch | ||
pd.set(10, -1); // constant_broadcast_type_C = null | ||
pd.set(11, 0); // output_N1M | ||
pd.set(12, 1); // output_elempack | ||
|
||
gemm->load_param(pd); | ||
|
||
gemm->load_model(ModelBinFromMatArray(0)); | ||
|
||
gemm->create_pipeline(opt); | ||
|
||
return 0; | ||
} | ||
|
||
int MatMul_x86::destroy_pipeline(const Option& opt) | ||
{ | ||
if (gemm) | ||
{ | ||
gemm->destroy_pipeline(opt); | ||
delete gemm; | ||
gemm = 0; | ||
} | ||
|
||
return 0; | ||
} | ||
|
||
int MatMul_x86::forward(const std::vector<Mat>& bottom_blobs, std::vector<Mat>& top_blobs, const Option& opt) const | ||
{ | ||
const Mat& A = bottom_blobs[0]; | ||
const Mat& B = bottom_blobs[1]; | ||
Mat& top_blob = top_blobs[0]; | ||
|
||
const int Adims = A.dims; | ||
const int Bdims = B.dims; | ||
const int max_ABdims = std::max(Adims, Bdims); | ||
const size_t elemsize = A.elemsize; | ||
|
||
if (Adims == 1 && Bdims == 1) | ||
{ | ||
// dot product | ||
std::vector<Mat> _bottom_blobs(2); | ||
_bottom_blobs[0] = A.reshape(A.w, 1); | ||
_bottom_blobs[1] = transB ? B.reshape(B.w, 1) : B.reshape(1, B.w); | ||
gemm->forward(_bottom_blobs, top_blobs, opt); | ||
|
||
top_blob = top_blob.reshape(1, opt.blob_allocator); | ||
} | ||
else if (Adims == 2 && Bdims == 2) | ||
{ | ||
// matrix multiply | ||
gemm->forward(bottom_blobs, top_blobs, opt); | ||
} | ||
else if (Adims == 1 && Bdims == 2) | ||
{ | ||
// matrix multiply | ||
std::vector<Mat> _bottom_blobs(2); | ||
_bottom_blobs[0] = A.reshape(A.w, 1); | ||
_bottom_blobs[1] = B; | ||
gemm->forward(_bottom_blobs, top_blobs, opt); | ||
|
||
top_blob = top_blob.reshape(top_blob.w, opt.blob_allocator); | ||
} | ||
else if (Adims == 2 && Bdims == 1) | ||
{ | ||
// matrix multiply | ||
std::vector<Mat> _bottom_blobs(2); | ||
_bottom_blobs[0] = A; | ||
_bottom_blobs[1] = transB ? B.reshape(B.w, 1) : B.reshape(1, B.w); | ||
gemm->forward(_bottom_blobs, top_blobs, opt); | ||
|
||
top_blob = top_blob.reshape(top_blob.h, opt.blob_allocator); | ||
} | ||
else if (Adims == 1 && Bdims > 2) | ||
{ | ||
// batched matrix multiply | ||
const int N = transB == 0 ? B.w : B.h; | ||
const int batch_size = B.d * B.c; | ||
|
||
Mat top_blob1(N, 1, batch_size, elemsize, opt.blob_allocator); | ||
if (top_blob1.empty()) | ||
return -100; | ||
|
||
Mat A1 = A.reshape(A.w, 1); | ||
Mat B1 = B.reshape(B.w, B.h, batch_size); | ||
|
||
for (int p = 0; p < batch_size; p++) | ||
{ | ||
std::vector<Mat> _bottom_blobs(2); | ||
_bottom_blobs[0] = A1; | ||
_bottom_blobs[1] = B1.channel(p); | ||
std::vector<Mat> _top_blobs(1); | ||
_top_blobs[0] = top_blob1.channel(p); | ||
gemm->forward(_bottom_blobs, _top_blobs, opt); | ||
} | ||
|
||
if (Bdims == 3) | ||
top_blob = top_blob1.reshape(N, B.d * B.c, opt.blob_allocator); | ||
else | ||
top_blob = top_blob1.reshape(N, B.d, B.c, opt.blob_allocator); | ||
} | ||
else if (Adims > 2 && Bdims == 1) | ||
{ | ||
// batched matrix multiply | ||
const int M = A.h; | ||
const int batch_size = A.d * A.c; | ||
|
||
Mat top_blob1(1, M, batch_size, elemsize, opt.blob_allocator); | ||
if (top_blob1.empty()) | ||
return -100; | ||
|
||
Mat A1 = A.reshape(A.w, A.h, batch_size); | ||
Mat BT = transB ? B.reshape(B.w, 1) : B.reshape(1, B.w); | ||
|
||
for (int p = 0; p < batch_size; p++) | ||
{ | ||
std::vector<Mat> _bottom_blobs(2); | ||
_bottom_blobs[0] = A1.channel(p); | ||
_bottom_blobs[1] = BT; | ||
std::vector<Mat> _top_blobs(1); | ||
_top_blobs[0] = top_blob1.channel(p); | ||
gemm->forward(_bottom_blobs, _top_blobs, opt); | ||
} | ||
|
||
if (Adims == 3) | ||
top_blob = top_blob1.reshape(M, A.d * A.c, opt.blob_allocator); | ||
else | ||
top_blob = top_blob1.reshape(M, A.d, A.c, opt.blob_allocator); | ||
} | ||
else if (max_ABdims == 3) | ||
{ | ||
Mat A1 = Adims == 2 ? A.reshape(A.w, A.h, 1) : A; | ||
Mat B1 = Bdims == 2 ? B.reshape(B.w, B.h, 1) : B; | ||
|
||
const int M = A1.h; | ||
const int N = transB == 0 ? B1.w : B1.h; | ||
const int batch_size = std::max(A1.c, B1.c); | ||
|
||
top_blob.create(N, M, batch_size, elemsize, opt.blob_allocator); | ||
if (top_blob.empty()) | ||
return -100; | ||
|
||
for (int p = 0; p < batch_size; p++) | ||
{ | ||
int Ap = A1.c == 1 ? 0 : p; | ||
int Bp = B1.c == 1 ? 0 : p; | ||
|
||
std::vector<Mat> _bottom_blobs(2); | ||
_bottom_blobs[0] = A1.channel(Ap); | ||
_bottom_blobs[1] = B1.channel(Bp); | ||
std::vector<Mat> _top_blobs(1); | ||
_top_blobs[0] = top_blob.channel(p); | ||
gemm->forward(_bottom_blobs, _top_blobs, opt); | ||
} | ||
} | ||
else if (max_ABdims == 4) | ||
{ | ||
Mat A1 = Adims == 3 ? A.reshape(A.w, A.h, A.c, 1) : A; | ||
Mat B1 = Bdims == 3 ? B.reshape(B.w, B.h, B.c, 1) : B; | ||
|
||
const int M = A1.h; | ||
const int N = transB == 0 ? B1.w : B1.h; | ||
const int batch_size_d = std::max(A1.d, B1.d); | ||
const int batch_size_c = std::max(A1.c, B1.c); | ||
|
||
top_blob.create(N, M, batch_size_d, batch_size_c, elemsize, opt.blob_allocator); | ||
if (top_blob.empty()) | ||
return -100; | ||
|
||
for (int p = 0; p < batch_size_c; p++) | ||
{ | ||
int Ap = A1.c == 1 ? 0 : p; | ||
int Bp = B1.c == 1 ? 0 : p; | ||
|
||
for (int q = 0; q < batch_size_d; q++) | ||
{ | ||
int Ad = A1.d == 1 ? 0 : q; | ||
int Bd = B1.d == 1 ? 0 : q; | ||
|
||
std::vector<Mat> _bottom_blobs(2); | ||
_bottom_blobs[0] = A1.channel(Ap).depth(Ad); | ||
_bottom_blobs[1] = B1.channel(Bp).depth(Bd); | ||
std::vector<Mat> _top_blobs(1); | ||
_top_blobs[0] = top_blob.channel(p).depth(q); | ||
gemm->forward(_bottom_blobs, _top_blobs, opt); | ||
} | ||
} | ||
} | ||
else | ||
{ | ||
NCNN_LOGE("impossible matmul %d %d", Adims, Bdims); | ||
return -1; | ||
} | ||
|
||
return 0; | ||
} | ||
|
||
} // namespace ncnn |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
// Tencent is pleased to support the open source community by making ncnn available. | ||
// | ||
// Copyright (C) 2022 THL A29 Limited, a Tencent company. All rights reserved. | ||
// | ||
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except | ||
// in compliance with the License. You may obtain a copy of the License at | ||
// | ||
// https://opensource.org/licenses/BSD-3-Clause | ||
// | ||
// Unless required by applicable law or agreed to in writing, software distributed | ||
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR | ||
// CONDITIONS OF ANY KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations under the License. | ||
|
||
#ifndef LAYER_MATMUL_X86_H | ||
#define LAYER_MATMUL_X86_H | ||
|
||
#include "matmul.h" | ||
|
||
namespace ncnn { | ||
|
||
class MatMul_x86 : virtual public MatMul | ||
{ | ||
public: | ||
MatMul_x86(); | ||
|
||
virtual int create_pipeline(const Option& opt); | ||
virtual int destroy_pipeline(const Option& opt); | ||
|
||
virtual int forward(const std::vector<Mat>& bottom_blobs, std::vector<Mat>& top_blobs, const Option& opt) const; | ||
|
||
public: | ||
Layer* gemm; | ||
}; | ||
|
||
} // namespace ncnn | ||
|
||
#endif // LAYER_MATMUL_X86_H |