Skip to content

Amazon Customer Lifetime Value (CLV) Analysis This project demonstrates an end-to-end analytics workflow for analyzing Customer Lifetime Value (CLV) using: Python – MySQL. Power BI . Azure (Azurite)

Notifications You must be signed in to change notification settings

Tanu272004/Amazon_CLV_Analytics_Project

Repository files navigation

Amazon_CLV_Analytics_Project

Amazon Customer Lifetime Value (CLV) Analysis This project demonstrates an end-to-end analytics workflow for analyzing Customer Lifetime Value (CLV) using: Python – MySQL. Power BI . Azure (Azurite)

📊 Amazon Customer Lifetime Value (CLV) Analysis

This project demonstrates an end-to-end data analytics pipeline for analyzing Customer Lifetime Value (CLV) using Python, MySQL, Power BI, and Azure (Azurite).


✅ 📌 Project Overview

  • Goal:

    • Calculate CLV for Amazon customers.
    • Identify high-value customers, revenue by region, and product category performance.
  • Business Impact:

    • Helps prioritize retention strategies.
    • Maximizes marketing ROI by focusing on high-value customers.

✅ 🛠 Tech Stack

  • Python → Data generation, cleaning, CLV calculation, predictive modeling.
  • MySQL → Data storage, schema creation, advanced queries.
  • Power BI → Dynamic dashboard for CLV visualization and segmentation.
  • Azure (Azurite) → Cloud deployment simulation.

✅ 📂 Workflow

  1. Data Generation & CLV Calculation

    • Used Python with Faker to create synthetic datasets:
      • Customers, Products, Orders, CLV table.
    • CLV calculation and predictive modeling using Linear Regression.
  2. Database Design & SQL Queries

    • Created normalized schema with foreign keys.
    • Loaded CSVs into MySQL.
    • Queries implemented:
      • Top 10 customers by CLV
      • Revenue by region
      • CLV segmentation (High/Medium/Low)
  3. Dashboard in Power BI

    • Connected Power BI to MySQL for dynamic reporting.
    • Key visuals:
      • KPIs: Total Revenue, Avg CLV, AOV, Customer Count
      • Top Customers by CLV
      • CLV Segmentation
      • Revenue by Region
      • AOV by Category
  4. Cloud Simulation

    • Simulated deployment with Azure Azurite.

✅ 📊 Dashboard Preview

Amazon CLV Dashboard


✅ ⚡ Key Insights

  • High-value customers contribute over 50% of revenue.
  • Top categories: Books & Sports.
  • North America is the highest revenue region.
  • Predictive CLV modeling enhances retention strategies.

✅ 📦 Installation

1. Clone this repository

git clone https://github.com/yourusername/amazon-clv-analysis.git
cd amazon-clv-analysis

2. Create virtual environment

bash
Copy
Edit
python -m venv venv
source venv/bin/activate  # Linux/Mac
venv\Scripts\activate     # Windows
3. Install dependencies

bash
Copy
Edit
pip install -r requirements.txt
4. Run Python script

bash
Copy
Edit
python CLV.py
✅ 📚 SQL Scripts
sql/create_tables.sql → Database schema

sql/load_data.sql → Import data

sql/queries.sql → Advanced insights

✅ 🚀 Future Scope
Real-time CLV updates via Azure Data Factory.

Add churn prediction using ML pipelines.

Deploy Power BI dashboard as a web app.

✅ 🔗 Links
GitHub Repo: https://github.com/Tanu272004/Amazon_CLV_Analytics_Project#amazon_clv_analytics_project

LinkedIn Post: https://www.linkedin.com/in/tanmay-sharma-800599373/

About

Amazon Customer Lifetime Value (CLV) Analysis This project demonstrates an end-to-end analytics workflow for analyzing Customer Lifetime Value (CLV) using: Python – MySQL. Power BI . Azure (Azurite)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages