Skip to content

Commit

Permalink
[Leaderboard] Update Leaderboard (#199)
Browse files Browse the repository at this point in the history
* Update leaderboard of node_classification and graph classification
  • Loading branch information
THINK2TRY authored Mar 3, 2021
1 parent eb0e463 commit 3907f24
Showing 2 changed files with 31 additions and 30 deletions.
2 changes: 1 addition & 1 deletion cogdl/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
__version__ = "0.2.1"
__version__ = "0.3.0"

from .experiments import experiment
from .oag import oagbert
59 changes: 30 additions & 29 deletions cogdl/tasks/README.md
Original file line number Diff line number Diff line change
@@ -42,23 +42,24 @@ This leaderboard reports unsupervised multi-label node classification setting. w

This leaderboard reports the semi-supervised node classification under a transductive setting including several popular graph neural network methods.

| Rank | Method | Cora | Citeseer | Pubmed |
| ---- | --------------------------------------------------------------------------------- | :------------: | :------------: | :------------: |
| 1 | Grand([Feng et al., NIPS'20](https://arxiv.org/pdf/2005.11079.pdf)) | 84.8 ± 0.3 | **75.1 ± 0.3** | **82.4 ± 0.4** |
| 2 | GCNII([Chen et al., ICML'20](https://arxiv.org/pdf/2007.02133.pdf)) | **85.1 ± 0.3** | 71.3 ± 0.4 | 80.2 ± 0.3 |
| 3 | DR-GAT [(Zou et al., 2019)](https://arxiv.org/abs/1907.02237) | 83.6 ± 0.5 | 72.8 ± 0.8 | 79.1 ± 0.3 |
| 4 | MVGRL [(Hassani et al., KDD'20)](https://arxiv.org/pdf/2006.05582v1.pdf) | 83.6 ± 0.2 | 73.0 ± 0.3 | 80.1 ± 0.7 |
| 5 | APPNP [(Klicpera et al., ICLR'19)](https://arxiv.org/pdf/1810.05997.pdf) | 82.5 ± 0.8 | 71.2 ± 0.2 | 80.2 ± 0.2 |
| 6 | GAT [(Veličković et al., ICLR'18)](https://arxiv.org/abs/1710.10903) | 82.9 ± 0.8 | 71.0 ± 0.3 | 78.9 ± 0.3 |
| 7 | GCN [(Kipf et al., ICLR'17)](https://arxiv.org/abs/1609.02907) | 82.3 ± 0.3 | 71.4 ± 0.4 | 79.5 ± 0.2 |
| 8 | SRGCN | 82.2 ± 0.2 | 72.8 ± 0.2 | 79.0 ± 0.4 |
| 9 | DGI [(Veličković et al., ICLR'19)](https://arxiv.org/abs/1809.10341) | 82.0 ± 0.2 | 71.2 ± 0.4 | 76.5 ± 0.6 |
| 10 | GraphSAGE [(Hamilton et al., NeurIPS'17)](https://arxiv.org/abs/1706.02216) | 80.1 ± 0.2 | 66.2 ± 0.4 | 77.2 ± 0.7 |
| 11 | GraphSAGE(unsup)[(Hamilton et al., NeurIPS'17)](https://arxiv.org/abs/1706.02216) | 78.2 ± 0.9 | 65.8 ± 1.0 | 78.2 ± 0.7 |
| 12 | Chebyshev [(Defferrard et al., NeurIPS'16)](https://arxiv.org/abs/1606.09375) | 79.0 ± 1.0 | 69.8 ± 0.5 | 68.6 ± 1.0 |
| 13 | Graph U-Net [(Gao et al., 2019)](https://arxiv.org/abs/1905.05178) | 81.8 | 67.1 | 77.3 |
| 14 | MixHop [(Abu-El-Haija et al., ICML'19)](https://arxiv.org/abs/1905.00067) | 81.9 ± 0.4 | 71.4 ± 0.8 | 80.8 ± 0.6 |
| 15 | SGC-PN [(Zhao & Akoglu, 2019)](https://arxiv.org/abs/1909.12223) | 76.4 ± 0.3 | 64.6 ± 0.6 | 79.6 ± 0.3 |
| Rank | Method | Cora | Citeseer | Pubmed |
| ---- | ------------------------------------------------------------ | :------------: | :------------: | :------------: |
| 1 | Grand([Feng et al., NIPS'20](https://arxiv.org/pdf/2005.11079.pdf)) | 84.8 ± 0.3 | **75.1 ± 0.3** | **82.4 ± 0.4** |
| 2 | GCNII([Chen et al., ICML'20](https://arxiv.org/pdf/2007.02133.pdf)) | **85.1 ± 0.3** | 71.3 ± 0.4 | 80.2 ± 0.3 |
| 3 | DR-GAT [(Zou et al., 2019)](https://arxiv.org/abs/1907.02237) | 83.6 ± 0.5 | 72.8 ± 0.8 | 79.1 ± 0.3 |
| 4 | MVGRL [(Hassani et al., KDD'20)](https://arxiv.org/pdf/2006.05582v1.pdf) | 83.6 ± 0.2 | 73.0 ± 0.3 | 80.1 ± 0.7 |
| 5 | APPNP [(Klicpera et al., ICLR'19)](https://arxiv.org/pdf/1810.05997.pdf) | 84.3 ± 0.8 | 72.0 ± 0.2 | 80.0 ± 0.2 |
| 6 | Graph U-Net [(Gao et al., 2019)](https://arxiv.org/abs/1905.05178) | 83.3 ± 0.3 | 71.2 ± 0.4 | 79.0 ± 0.7 |
| 7 | GAT [(Veličković et al., ICLR'18)](https://arxiv.org/abs/1710.10903) | 82.9 ± 0.8 | 71.0 ± 0.3 | 78.9 ± 0.3 |
| 8 | GDC_GCN [(Klicpera et al., NeurIPS'19)](https://arxiv.org/pdf/1911.05485.pdf) | 82.5 ± 0.4 | 71.2 ± 0.3 | 79.8 ± 0.5 |
| 9 | DropEdge[(Rong et al., ICLR'20)](https://openreview.net/pdf?id=Hkx1qkrKPr) | 82.1 ± 0.5 | 72.1 ± 0.4 | 79.7 ± 0.4 |
| 10 | GCN [(Kipf et al., ICLR'17)](https://arxiv.org/abs/1609.02907) | 82.3 ± 0.3 | 71.4 ± 0.4 | 79.5 ± 0.2 |
| 11 | DGI [(Veličković et al., ICLR'19)](https://arxiv.org/abs/1809.10341) | 82.0 ± 0.2 | 71.2 ± 0.4 | 76.5 ± 0.6 |
| 12 | JK-net [(Xu et al., ICML'18)](https://arxiv.org/pdf/1806.03536.pdf) | 81.8 ± 0.2 | 69.5 ± 0.4 | 77.7 ± 0.6 |
| 13 | GraphSAGE [(Hamilton et al., NeurIPS'17)](https://arxiv.org/abs/1706.02216) | 80.1 ± 0.2 | 66.2 ± 0.4 | 77.2 ± 0.7 |
| 14 | GraphSAGE(unsup)[(Hamilton et al., NeurIPS'17)](https://arxiv.org/abs/1706.02216) | 78.2 ± 0.9 | 65.8 ± 1.0 | 78.2 ± 0.7 |
| 15 | Chebyshev [(Defferrard et al., NeurIPS'16)](https://arxiv.org/abs/1606.09375) | 79.0 ± 1.0 | 69.8 ± 0.5 | 68.6 ± 1.0 |
| 16 | MixHop [(Abu-El-Haija et al., ICML'19)](https://arxiv.org/abs/1905.00067) | 81.9 ± 0.4 | 71.4 ± 0.8 | 80.8 ± 0.6 |

#### Multiplex Node Classification

@@ -121,15 +122,15 @@ For knowledge graph completion, we adopt Mean Reciprocal Rank (MRR) as the evalu

This leaderboard reports the performance of graph classification methods. we run all algorithms on several datasets and report the sorted experimental results.

| Rank | Method | MUTAG | IMDB-B | IMDB-M | PROTEINS | COLLAB |
| :--- | :--------------------------------------------------------------------------------------------- | :-------: | :-------: | :-------: | :-------: | :-------: |
| 1 | GIN [(Xu et al, ICLR'19)](https://openreview.net/forum?id=ryGs6iA5Km) | **92.06** | **76.10** | 51.80 | 75.19 | 79.52 |
| 2 | Infograph [(Sun et al, ICLR'20)](https://openreview.net/forum?id=r1lfF2NYvH) | 88.95 | 74.50 | 51.33 | 73.93 | 79.4 |
| 3 | DiffPool [(Ying et al, NeuIPS'18)](https://arxiv.org/abs/1806.08804) | 85.18 | 72.40 | 50.50 | 75.30 | 79.27 |
| 4 | SortPool [(Zhang et al, AAAI'18)](https://www.cse.wustl.edu/~muhan/papers/AAAI_2018_DGCNN.pdf) | 87.25 | 75.40 | 50.47 | 73.23 | 80.07 |
| 5 | Graph2Vec [(Narayanan et al, CoRR'17)](https://arxiv.org/abs/1707.05005) | 83.68 | 73.90 | **52.27** | 73.30 | **85.58** |
| 6 | PATCH_SAN [(Niepert et al, ICML'16)](https://arxiv.org/pdf/1605.05273.pdf) | 86.12 | 76.00 | 46.40 | **75.38** | 74.34 |
| 7 | HGP-SL [(Zhang et al, AAAI'20)](https://arxiv.org/abs/1911.05954) | 81.93 | 74.00 | 49.53 | 73.94 | 82.08 |
| 8 | DGCNN [(Wang et al, ACM Transactions on Graphics'17)](https://arxiv.org/abs/1801.07829) | 83.33 | 69.50 | 46.33 | 66.67 | 77.45 |
| 9 | SAGPool [(J. Lee, ICML'19)](https://arxiv.org/abs/1904.08082) | 55.55 | 63.00 | 51.33 | 72.59 | / |
| 10 | DGK [(Yanardag et al, KDD'15)](https://dl.acm.org/doi/10.1145/2783258.2783417) | 83.68 | 55.00 | 40.40 | 72.59 | / |
| Rank | Method | MUTAG | IMDB-B | IMDB-M | PROTEINS | COLLAB | PTC | NCI1 | REDDIT-B |
| :--- | :----------------------------------------------------------- | :-------: | :-------: | :-------: | :-------: | :-------: | ----- | ----- | -------- |
| 1 | GIN [(Xu et al, ICLR'19)](https://openreview.net/forum?id=ryGs6iA5Km) | **92.06** | **76.10** | 51.80 | 75.19 | 79.52 | 67.82 | 81.66 | 83.10 |
| 2 | Infograph [(Sun et al, ICLR'20)](https://openreview.net/forum?id=r1lfF2NYvH) | 88.95 | 74.50 | 51.33 | 73.93 | 79.4 | 60.74 | 76.64 | 76.55 |
| 3 | DiffPool [(Ying et al, NeuIPS'18)](https://arxiv.org/abs/1806.08804) | 85.18 | 72.50 | 50.50 | 75.30 | 79.27 | 58.00 | 69.09 | 81.20 |
| 4 | SortPool [(Zhang et al, AAAI'18)](https://www.cse.wustl.edu/~muhan/papers/AAAI_2018_DGCNN.pdf) | 87.25 | 75.40 | 50.47 | 74.48 | 80.07 | 62.04 | 73.99 | 78.15 |
| 5 | Graph2Vec [(Narayanan et al, CoRR'17)](https://arxiv.org/abs/1707.05005) | 83.68 | 73.90 | **52.27** | 73.30 | **85.58** | 54.76 | 71.85 | 91.77 |
| 6 | PATCH_SAN [(Niepert et al, ICML'16)](https://arxiv.org/pdf/1605.05273.pdf) | 86.12 | 76.00 | 46.40 | **75.38** | 74.34 | 61.60 | 69.82 | 60.61 |
| 7 | HGP-SL [(Zhang et al, AAAI'20)](https://arxiv.org/abs/1911.05954) | 81.93 | 74.00 | 49.53 | 73.94 | 82.08 | / | / | / |
| 8 | DGCNN [(Wang et al, ACM Transactions on Graphics'17)](https://arxiv.org/abs/1801.07829) | 83.33 | 71.60 | 49.20 | 66.75 | 77.45 | 56.62 | 65.96 | 86.20 |
| 9 | SAGPool [(J. Lee, ICML'19)](https://arxiv.org/abs/1904.08082) | 71.73 | 74.80 | 51.33 | 74.03 | / | 59.92 | 72.87 | 89.21 |
| 10 | DGK [(Yanardag et al, KDD'15)](https://dl.acm.org/doi/10.1145/2783258.2783417) | 85.58 | 55.00 | 40.40 | 72.59 | / | / | / | / |

0 comments on commit 3907f24

Please sign in to comment.