Skip to content

Commit

Permalink
[Doc] v0.4 release (#236)
Browse files Browse the repository at this point in the history
  • Loading branch information
cenyk1230 authored May 30, 2021
1 parent e738c9f commit 3206099
Show file tree
Hide file tree
Showing 4 changed files with 10 additions and 6 deletions.
6 changes: 4 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,18 +21,20 @@ We summarize the contributions of CogDL as follows:

## ❗ News

- The new **v0.4.0 release** refactors the data storage (from `Data` to `Graph`) and provides more fast operators to speed up GNN training. It also includes many self-supervised learning methods on graphs. BTW, we are glad to announce that we will give a tutorial on KDD 2021 in August. Please see [this link](https://kdd2021graph.github.io/) for more details. 🎉

- CogDL supports GNN models with Mixture of Experts (MoE). You can install [FastMoE](https://github.com/laekov/fastmoe) and try **[MoE GCN](./cogdl/models/nn/moe_gcn.py)** in CogDL now!

- The new **v0.3.0 release** provides a fast spmm operator to speed up GNN training. We also release the first version of **[CogDL paper](https://arxiv.org/abs/2103.00959)** in arXiv. You can join [our slack](https://join.slack.com/t/cogdl/shared_invite/zt-b9b4a49j-2aMB035qZKxvjV4vqf0hEg) for discussion. 🎉🎉🎉

- The new **v0.2.0 release** includes easy-to-use `experiment` and `pipeline` APIs for all experiments and applications. The `experiment` API supports automl features of searching hyper-parameters. This release also provides `OAGBert` API for model inference (`OAGBert` is trained on large-scale academic corpus by our lab). Some features and models are added by the open source community (thanks to all the contributors 🎉).

<details>
<summary>
News History
</summary>
<br/>

- The new **v0.2.0 release** includes easy-to-use `experiment` and `pipeline` APIs for all experiments and applications. The `experiment` API supports automl features of searching hyper-parameters. This release also provides `OAGBert` API for model inference (`OAGBert` is trained on large-scale academic corpus by our lab). Some features and models are added by the open source community (thanks to all the contributors 🎉).

- The new **v0.1.2 release** includes a pre-training task, many examples, OGB datasets, some knowledge graph embedding methods, and some graph neural network models. The coverage of CogDL is increased to 80%. Some new APIs, such as `Trainer` and `Sampler`, are developed and being tested.

- The new **v0.1.1 release** includes the knowledge link prediction task, many state-of-the-art models, and `optuna` support. We also have a [Chinese WeChat post](https://mp.weixin.qq.com/s/IUh-ctQwtSXGvdTij5eDDg) about the CogDL release.
Expand Down
6 changes: 4 additions & 2 deletions README_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,18 +21,20 @@ CogDL的特性包括:

## ❗ 最新

- 最新的 **v0.4.0版本** 重构了底层的数据存储(从`Data`类变为`Graph`类),并且提供了更多快速的算子来加速图神经网络的训练。这个版本还包含了很多图自监督学习的算法。同时,我们很高兴地宣布我们将在8月份的KDD 2021会议上给一个CogDL相关的tutorial。具体信息请参见[这个链接](https://kdd2021graph.github.io/). 🎉

- CogDL支持图神经网络模型使用混合专家模块(Mixture of Experts, MoE)。 你可以安装[FastMoE](https://github.com/laekov/fastmoe)然后在CogDL中尝试 **[MoE GCN](./cogdl/models/nn/moe_gcn.py)** 模型!

- 最新的 **v0.3.0版本** 提供了快速的稀疏矩阵乘操作来加速图神经网络模型的训练。我们在arXiv上发布了 **[CogDL paper](https://arxiv.org/abs/2103.00959)** 的初版. 你可以加入[我们的slack](https://join.slack.com/t/cogdl/shared_invite/zt-b9b4a49j-2aMB035qZKxvjV4vqf0hEg)来讨论CogDL相关的内容。🎉

- 最新的 **v0.2.0版本** 包含了非常易用的`experiment``pipeline`接口,其中`experiment`接口还支持超参搜索。这个版本还提供了`OAGBert`模型的接口(`OAGBert`是我们实验室推出的在大规模学术语料下训练的模型)。这个版本的很多内容是由开源社区的小伙伴们提供的,感谢大家的支持!🎉

<details>
<summary>
历史
</summary>
<br/>

- 最新的 **v0.2.0版本** 包含了非常易用的`experiment``pipeline`接口,其中`experiment`接口还支持超参搜索。这个版本还提供了`OAGBert`模型的接口(`OAGBert`是我们实验室推出的在大规模学术语料下训练的模型)。这个版本的很多内容是由开源社区的小伙伴们提供的,感谢大家的支持!🎉

- 最新的 **v0.1.2版本** 包括了预训练任务、各种使用样例、OGB数据集、知识图谱表示学习算法和一些图神经网络模型。CogDL的测试覆盖率增加至80%。正在开发和测试一些新的API,比如`Trainer``Sampler`

- 最新的 **v0.1.1版本** 包括了知识图谱链接预测任务、很多前沿的模型,支持使用`optuna`进行超参搜索。我们同时发布了一篇[推送](https://mp.weixin.qq.com/s/IUh-ctQwtSXGvdTij5eDDg)来介绍CogDL。
Expand Down
2 changes: 1 addition & 1 deletion cogdl/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
__version__ = "0.3.0.post1"
__version__ = "0.4.0"

from .experiments import experiment
from .oag import oagbert
Expand Down
2 changes: 1 addition & 1 deletion cogdl/operators/mhspmm.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@
def csrmhspmm(rowptr, colind, feat, attention):
return MHSPMMFunction.apply(rowptr, colind, feat, attention)

print("Use fast Multi-head attention...")

except Exception:
mhspmm = None
csrmhspmm = None
Expand Down

0 comments on commit 3206099

Please sign in to comment.