Skip to content

SunNEET/LeetCode

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LeetCode

LeetCode練習的備份,含註解

1. Two Sum:

Hashmap O(N)

2. Add Two Number:

Dummy node, while(l1||l2||carry)

3. Longest Substring Without Repeating Characters

unordered_map + sliding window (1)while(right < s.length()) (2)if(!s.length()) return 0

4. Median of Two Sorted Arrays

(1) Find out a partition point of nums1 & nums2 s.t. the values in the left of the partition are all less than/equal to the right of partition x1, x2 | x3 y1, y2 | y3, y4 => x2 ≤ y3 && y2 ≤ x3 => if x2 > y3, move partitionX left by 1 step(which also make partitionY move right by 1 step); if y2 > x3 ...

(2) We want the number of elements on the left side of the merged array are (n+m+1)/2, (odd && odd, (3,3) => mid = 3, odd && even, (3,4) => 4, even && even, (2,2) => 2), so if we decide the partition place of nums1, it also decide the partition place of nums2.

(3) l=0, r=n, while(l<=r), maxleftX,minRightX,maxLeftY,minRightY

5. Longest Palindromic Substring

Find out a res_start & res_len, try to start from every possible (i,i), (i,i+1)

6. ZigZag Conversion


Δ1 = 2n-2 Δ2 = 0 1 2n-1 4n-3 Δ1 = 2n-4 Δ2 = 2 2 2n-2 2n 4n-4 4n-2 Δ1 = 2n-6 Δ2 = 4 3 2n-3 2n+1 4n-5 . Δ1 = ... Δ2 = . . . . . Δ1 = ... Δ2 = . n+2 . 3n . Δ1 = 2n-2*(i+1) n-1 n+1 3n-3 3n-1 5n-5 Δ1 = 0 Δ2 = 2n-2 n 3n-2 5n-4

Init delta1 = 2*numRows-2*(i+1); delta2 = 2*i; We do it row by row As row number gets bigger, delta1 gets smaller and delta2 gets bigger * if(pos >= len) break;

7. Reverse Integer

Overflow cases: (1) INT_MIN (2) ans > INT_MAN/10 (3) ans > INT_MAX + x%10 take off the sign and multiply it back when return

8. String to Integer (atoi)

Handle 4 cases: (1) discards all leading whitespaces (2)sign of the number (3)overflow (4)invalid input

9. Palindrome Number

Special cases: (1) x<0 (2) only 1 digit Without converting the integer to a string: get left half part and compare to right half part 12|1 => (12/10, 1) => true 12|21 => (12, 12) => true

10. Regular Expression Matching

Too hard to summarize...

11. Container With Most Water

2 pointer: move pointer points to shorter height move inside to look for higher height while (height[i] <= h && i < j) i++; while (height[j] <= h && i < j) j--;

12. Integer to Roman

Define THOUS[]={"","M","MM","MMM"}, HUNDS[]={"","C","CC","CCC","CD","D","DC","DCC","DCCC","CM"} , TENS[]={"","X","XX","XXX","XL","L","LX","LXX","LXXX","XC"};, ONES[]={"","I","II","III","IV","V","VI","VII","VIII","IX"}; THOUS[(num%10000)/1000]+HUNDS[(num%1000)/100]+TENS[(num%100)/10]+ONES[num%10]

13. Roman to Integer

最右邊開始往左一個一個看羅馬數字就好了 unordered_map<char, int> roman = { {'I', 1}, {'V', 5}, {'X', 10}, {'L', 50}, {'C', 100}, {'D', 500}, {'M', 1000}}; if(roman[s[i]] < roman[s[i+1]]) sum -= roman[s[i]]; else sum += roman[s[i]];

14. Longest Common Prefix

從 0 開始枚舉 idx,然後比對所有字串的 s[idx] 字元,idx > s的長度或有不合就直接 return res

15. 3Sum

Sort + 2 pointers: 枚舉 nums[i],然後往右看nums[left] 和 nums[right] 能否湊出 -nums[i]

16. 3Sum Closest

Sort + 2 pointers: 枚舉 nums[i],然後往右看nums[left] 和 nums[right] if(sum == target) return sum, 用 abs(target-sum) 找距離最短的sum

17. Letter Combinations of a Phone Number

Map '2' -> "abc", '3' -> "def" ... + DFS enumerate each possible combination

18. 4Sum

用 O(N^2) extra space 建表,就可以用O(N^2)算出答案

19. Remove Nth Node From End of List

Method1: Dummy node + backtracking + counter Method2: 2 pointers (slow & fast), Make fast n nodes ahead of slow

20. Valid Parentheses

stack + hashmap

21. Merge Two Sorted Lists

Dummy node + if(!l1 || (l2 && l2->val < l1->val))

22. Generate Parentheses

DFS + goal depth is 2*n + if(left < n) DFS(+'(') if(left>right) DFS(')')

23. Merge k Sorted Lists

D&C + Merge Two Sorted Lists

24. Swap Nodes in Pairs

Dummy node + cur = &dummy + while(cur->next && cur->next->next)

25. Reverse Nodes in k-Group

Use hasKNodes to determine if the number of the remaining nodes are greater than k pre=NULL, cur=head --> nxt = cur->next, cur->next = pre, pre = cur, cur = nxt

26. Remove Duplicates from Sorted Array

2 pointers ans_idx, idx: if(a[ans_idx]==a[idx]) 繼續往後找到不重複的為止 a[++ans_idx] = a[idx]

27. Remove Element

2 pointers: 跟 26. 差不多

28. Implement strStr()

two for loop

29. Divide Two Integers

巧秒的處理 -2^31 和其他會造成 overflow 的計算 (1) dividend == INT_MIN ---> (i) if(divisor == -1) return INT_MAX; if(divisor == 1) return INT_MIN; if(divisor == INT_MIN) return 1; 為了避免等等 abs(dividend) overflow,所以先減去一份 divisor( dividend += abs(divisor);quotient++;),只是因為現在是負數,其實就跟轉成絕對值後減掉 divisor 是一樣的 (2) 將 dividend - (tmp<<1) >= 0 拆開,避免 tmp overflow

logic: shift 被除數和mul, quotient += mul

31. Next Permutation

從後往前找第一個遞增發生的位置(a[i] < a[i+1]), 然後跟後面那串大於a[i]中的最小值互換

32.

Too hard...

33. Search in Rotated Sorted Array

Binary search 看到排序且O(logn)就肯定是二分搜,只是 array 有 rotate 過,所以需要多一些判斷 (1) 先比較 nums[mid] 和 nums[l],如果 nums[mid] < nums[l],就是有元素 rotate 到左邊, 因此,nums裡的最大值會在 mid 的 左半邊。 (i). 如果 target > mid 且 target <= nums[r],代表 target 就位於mid右邊的部分 (ii). 否則的話 (target 比 nums[mid] 小 || target 比 nums[r] 還大 ),這值都只會出現在左邊 - e.g [5,6,0,1,2,3,4], target=2, l=0, r=5, mid=3, 這樣的話就會是 (1)-(i). 的情況 - 假如同樣是上面的例子, target=0 or 5, 那都會是 (1)-2. 的情況 (2) nums[mid] > nums[r] 同理,nums 裡的最小值會在 mid 的 右半邊。 (3) 以上情形都沒發生,那就是正常做 binary search

34. Find First and Last Position of Element in Sorted Array

Do binary search 2 times

36. Valid Sudoku

row[x][num], col[y][num], use (3*(i/3)+j/3) to locate the block

38. Count and Say

while( i+1 < ans.size() && ans[i]==ans[i+1] ) { cnt++; i++; } cur += to_string(cnt) + ans[i];

39. Combination Sum

DFS + for(int i=start; i < candidates.size(); i++) + if(cur < 0) return; if(cur == 0){res.push_back(tmp); return;}

41. First Missing Positive

keep swap the positive number "N" to index "N-1" if N > 0 && N <= nums.size() && no duplicate if nums[i]!=i+1 return i+1;

42. Trapping Rain Water

Method(1) 基本的思路就是, 不是用底*高來算, 而是每個單元寬度分開看,最左跟最右自然不用管, 所以只要把[1~n-1]裡的每格,他能有多高的水加起來, 就是答案。每格的水的高度求法: h = min(left_max,right_max) - height[i]; 淺顯易懂 但直接雙層迴圈(第一層枚舉要計算高度的格子, 第二層分別找左邊最高跟右邊最高)枚舉的話, 時間複雜度會上到O(N^2)

這邊可以用DP把到[0i]為止, 左邊的最高值存起來 以及[in]為止, 右邊最高的值存起來 然後就可以用一個迴圈來求上面提過的式子了

Method(2) 可以不用 extra space,用 two pointer 就行了。想法很類似,一樣是一次處理一個unit。 當 A[left] <= A[right],表示當前左界的高度比較矮,所以往這邊注水的話,右邊比較高或一樣高的那個, 是一定能擋住的。有點像我們從左右各放一個柱子進去看能 trap 住多少水

45. Jump Game II

reedy, 考量三個變數 reach, step 和 maxposition: reach 代表目前能到的最右界, step 表示擴展到這個reach要走了步 maxposition 表示下一次的step能走到的最右界. 如果 i 走到 reach 了,代表已經走到這一次 step 的極限,要 step++ 了

46. Permutations

for(int i=pos; i < nums.size(); i++) { swap(nums[i], nums[pos]); helper(res, nums, pos+1); swap(nums[i], nums[pos]); }

47. Permutations II

基本上一樣,要先排序再用if (i != k && num[i] == num[k]) continue; 來跳過 duplicate combination

48. Rotate Image

Rotated clockwise: Reverse the rows, and then swap symmetric (swap(M[i][j], M[j][i])) anticlockwise rotate: Reverse the cols, then swap symmetric

49. Group Anagrams

複雜度O(N*(M+26)), 為了省去sort這個步驟 需要多用一個字串cnt來存每個字元的出現次數, 並且用這個字串當作map的key 例如 "abc" 的 cnt 就會是 "#1#1#1#0....." "bac" 也會跟上面一樣

50.

Releases

No releases published

Packages

No packages published

Languages