Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fits event lists #834

Merged
merged 19 commits into from
Oct 22, 2024
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/changes/834.feature.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
Introduced FITSReader class for lazy-loading of event lists
36 changes: 14 additions & 22 deletions stingray/events.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
from .base import StingrayTimeseries
from .filters import get_deadtime_mask
from .gti import generate_indices_of_boundaries
from .io import load_events_and_gtis, pi_to_energy
from .io import load_events_and_gtis, pi_to_energy, get_file_extension
from .lightcurve import Lightcurve
from .utils import simon, njit
from .utils import histogram
Expand Down Expand Up @@ -620,28 +620,20 @@ def read(cls, filename, fmt=None, rmf_file=None, **kwargs):
ev: :class:`EventList` object
The :class:`EventList` object reconstructed from file
"""

if fmt is None:
for fits_ext in ["fits", "evt"]:
if fits_ext in get_file_extension(filename).lower():
fmt = "hea"
break
if fmt is not None and fmt.lower() in ("hea", "ogip"):
evtdata = load_events_and_gtis(filename, **kwargs)

evt = EventList(
time=evtdata.ev_list,
gti=evtdata.gti_list,
pi=evtdata.pi_list,
energy=evtdata.energy_list,
mjdref=evtdata.mjdref,
instr=evtdata.instr,
mission=evtdata.mission,
header=evtdata.header,
detector_id=evtdata.detector_id,
ephem=evtdata.ephem,
timeref=evtdata.timeref,
timesys=evtdata.timesys,
)
if "additional_columns" in kwargs:
for key in evtdata.additional_data:
if not hasattr(evt, key.lower()):
setattr(evt, key.lower(), evtdata.additional_data[key])
from .io import FITSTimeseriesReader

additional_columns = kwargs.pop("additional_columns", None)

evt = FITSTimeseriesReader(
filename, output_class=EventList, additional_columns=additional_columns
)[:]

if rmf_file is not None:
evt.convert_pi_to_energy(rmf_file)
return evt
Expand Down
2 changes: 1 addition & 1 deletion stingray/fourier.py
Original file line number Diff line number Diff line change
Expand Up @@ -2045,7 +2045,7 @@ def local_show_progress(a):
ft1 = fft(flux1)
ft2 = fft(flux2)

# Calculate the sum of each light curve, to calculate the mean
# Calculate the sum of each light curve chunk, to calculate the mean
n_ph1 = flux1.sum()
n_ph2 = flux2.sum()
n_ph = np.sqrt(n_ph1 * n_ph2)
Expand Down
160 changes: 160 additions & 0 deletions stingray/gti.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,9 @@
"gti_border_bins",
"generate_indices_of_segment_boundaries_unbinned",
"generate_indices_of_segment_boundaries_binned",
"split_gtis_by_exposure",
"split_gtis_at_index",
"find_large_bad_time_intervals",
]

logger = setup_logger()
Expand Down Expand Up @@ -270,6 +273,8 @@ def get_gti_from_all_extensions(lchdulist, accepted_gtistrings=["GTI"], det_numb
... det_numbers=[5])
>>> assert np.allclose(gti, [[200, 250]])
"""
if isinstance(lchdulist, str):
lchdulist = fits.open(lchdulist)
acc_gti_strs = copy.deepcopy(accepted_gtistrings)
if det_numbers is not None:
for i in det_numbers:
Expand Down Expand Up @@ -1687,3 +1692,158 @@ def generate_indices_of_segment_boundaries_binned(times, gti, segment_size, dt=N
dt = 0
for idx0, idx1 in zip(startidx, stopidx):
yield times[idx0] - dt / 2, times[min(idx1, times.size - 1)] - dt / 2, idx0, idx1


def split_gtis_at_indices(gtis, index_list):
"""Split a GTI list at the given indices, creating multiple GTI lists.

Parameters
----------
gtis : 2-d float array
List of GTIs of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]``
index_list : int or array-like
Index or list of indices at which to split the GTIs

Returns
-------
gti_lists : list of 2-d float arrays
List of GTI lists, split at the given indices

Examples
--------
>>> gtis = [[0, 30], [50, 60], [80, 90]]
>>> new_gtis = split_gtis_at_indices(gtis, 1)
>>> assert np.allclose(new_gtis[0], [[0, 30]])
>>> assert np.allclose(new_gtis[1], [[50, 60], [80, 90]])
"""
gtis = np.asanyarray(gtis)
if not isinstance(index_list, Iterable):
index_list = [index_list]
previous_idx = 0
gti_lists = []
if index_list[0] == 0:
index_list = index_list[1:]
for idx in index_list:
gti_lists.append(gtis[previous_idx:idx, :])
previous_idx = idx
if index_list[-1] != -1 and index_list[-1] <= gtis[:, 0].size - 1:
gti_lists.append(gtis[previous_idx:, :])

return gti_lists


def find_large_bad_time_intervals(gtis, bti_length_limit=86400):
"""Find large bad time intervals (BTIs) in a list of GTIs, and split the GTI list accordingly.

Parameters
----------
gtis : 2-d float array
List of GTIs of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]``
bti_length_limit : float
Maximum length of a BTI. If a BTI is longer than this, an edge will be
returned at the midpoint of the BTI.

Returns
-------
bad_interval_midpoints : list of float
List of midpoints of large bad time intervals

Examples
--------
>>> gtis = [[0, 30], [86450, 86460], [86480, 86490]]
>>> bad_interval_midpoints = find_large_bad_time_intervals(gtis)
>>> assert np.allclose(bad_interval_midpoints, [43240])
matteolucchini1 marked this conversation as resolved.
Show resolved Hide resolved
"""
gtis = np.asanyarray(gtis)
bad_interval_midpoints = []
# Check for compulsory edges
last_edge = gtis[0, 0]
for g in gtis:
if g[0] - last_edge > bti_length_limit:
logger.info(f"Detected large bad time interval between {g[0]} and {last_edge}")
bad_interval_midpoints.append((g[0] + last_edge) / 2)
last_edge = g[1]

return bad_interval_midpoints


def split_gtis_by_exposure(gtis, exposure_per_chunk, new_interval_if_gti_sep=None):
"""Split a list of GTIs into smaller GTI lists of a given total (approximate) exposure.

Parameters
----------
gtis : 2-d float array
List of GTIs of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]``
exposure_per_chunk : float
Total exposure of each chunk, in seconds

Other Parameters
----------------
new_interval_if_gti_sep : float
If the GTIs are separated by more than this time, split the observation in two.

Returns
-------
gti_list : list of 2-d float arrays
List of GTI lists, split into chunks of the given exposure / separated by more
than the given limit separation

Examples
--------
>>> gtis = [[0, 30], [86450, 86460]]
>>> new_gtis = split_gtis_by_exposure(gtis, 400, new_interval_if_gti_sep=86400)
>>> assert np.allclose(new_gtis[0], [[0, 30]])
>>> assert np.allclose(new_gtis[1], [[86450, 86460]])
>>> gtis = [[0, 30], [40, 70], [90, 120], [130, 160]]
>>> new_gtis = split_gtis_by_exposure(gtis, 60)
>>> assert np.allclose(new_gtis[0], [[0, 30], [40, 70]])
>>> assert np.allclose(new_gtis[1], [[90, 120], [130, 160]])

"""
gtis = np.asanyarray(gtis)
rough_total_exposure = np.sum(np.diff(gtis, axis=1))
compulsory_edges = []
if new_interval_if_gti_sep is not None:
compulsory_edges = find_large_bad_time_intervals(gtis, new_interval_if_gti_sep)

base_gti_list = split_gtis_at_indices(gtis, np.searchsorted(gtis[:, 1], compulsory_edges))
final_gti_list = []
for local_gtis in base_gti_list:
local_split_gtis = split_gtis_by_exposure(local_gtis, exposure_per_chunk)
final_gti_list.extend(local_split_gtis)
return final_gti_list

n_intervals = int(np.rint(rough_total_exposure / exposure_per_chunk))

if n_intervals <= 1:
return np.asarray([gtis])

if len(gtis) <= n_intervals:
new_gtis = []
for g in gtis:
if g[1] - g[0] > exposure_per_chunk:
new_edges = np.arange(g[0], g[1], exposure_per_chunk)
if new_edges[-1] < g[1]:
new_edges = np.append(new_edges, g[1])

new_gtis.extend([[ed0, ed1] for ed0, ed1 in zip(new_edges[:-1], new_edges[1:])])
else:
new_gtis.append(g)
gtis = np.asarray(new_gtis)

exposure_edges = []
last_exposure = 0
for g in gtis:
exposure_edges.append(last_exposure)
last_exposure += g[1] - g[0]
total_exposure = last_exposure

exposure_edges = np.asarray(exposure_edges)

exposure_per_interval = total_exposure / n_intervals
exposure_intervals = np.arange(0, total_exposure + exposure_per_interval, exposure_per_interval)

index_list = np.searchsorted(exposure_edges, exposure_intervals)

vals = split_gtis_at_indices(gtis, index_list)
return vals
Loading
Loading