Skip to content

Commit

Permalink
Added fred model
Browse files Browse the repository at this point in the history
  • Loading branch information
Gaurav17Joshi committed Jun 22, 2023
1 parent 0b5dd02 commit c0019f9
Showing 1 changed file with 133 additions and 0 deletions.
133 changes: 133 additions & 0 deletions stingray/modeling/gpmodeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,8 @@ def get_mean(mean_type, mean_params):
mean = functools.partial(_skew_gaussian, mean_params=mean_params)
elif mean_type == "skew_exponential":
mean = functools.partial(_skew_exponential, mean_params=mean_params)
elif mean_type == "fred":
mean = functools.partial(_fred, mean_params=mean_params)
return mean


Expand Down Expand Up @@ -200,6 +202,39 @@ def _skew_exponential(t, mean_params):
)


def _fred(t, mean_params):
"""A fast rise exponential decay (FRED) flare shape.
Parameters
----------
t: jnp.ndarray
The time coordinates.
A: jnp.int
Amplitude of the flare.
t0:
The location of the maximum.
phi:
Symmetry parameter of the flare.
delta:
Offset parameter of the flare.
Returns
-------
The y values for exponential flare.
"""
return (
mean_params["A"]
* jnp.exp(
-mean_params["phi"]
* (
(t + mean_params["delta"]) / mean_params["t0"]
+ mean_params["t0"] / (t + mean_params["delta"])
)
)
* jnp.exp(2 * mean_params["phi"])
)


class GP:
"""
Makes a GP object which takes in a Stingray.Lightcurve and fits a Gaussian
Expand Down Expand Up @@ -420,6 +455,47 @@ def skew_QPOprior_model():
):
return skew_QPOprior_model

def fred_RNprior_model():
arn = yield Prior(tfpd.Uniform(0.1 * kwargs["span"], 2 * kwargs["span"]), name="arn")
crn = yield Prior(tfpd.Uniform(jnp.log(1 / kwargs["T"]), jnp.log(kwargs["f"])), name="crn")

A = yield Prior(tfpd.Uniform(0.1 * kwargs["span"], 2 * kwargs["span"]), name="A")
t0 = yield Prior(
tfpd.Uniform(
kwargs["Times"][0] - 0.1 * kwargs["T"], kwargs["Times"][-1] + 0.1 * kwargs["T"]
),
name="t0",
)
phi = yield Prior(tfpd.Uniform(2 * jnp.exp(-2), 2 * jnp.exp(4)), name="phi")
delta = yield Prior(tfpd.Uniform(0, kwargs["Times"][-1] / 2), name="delta")

return arn, crn, A, t0, phi, delta

if (kernel_type == "RN") & (mean_type == "fred"):
return fred_RNprior_model

def fred_QPOprior_model():
arn = yield Prior(tfpd.Uniform(0.1 * kwargs["span"], 2 * kwargs["span"]), name="arn")
crn = yield Prior(tfpd.Uniform(jnp.log(1 / kwargs["T"]), jnp.log(kwargs["f"])), name="crn")
aqpo = yield Prior(tfpd.Uniform(0.1 * kwargs["span"], 2 * kwargs["span"]), name="aqpo")
cqpo = yield Prior(tfpd.Uniform(1 / 10 / kwargs["T"], jnp.log(kwargs["f"])), name="cqpo")
freq = yield Prior(tfpd.Uniform(2 / kwargs["T"], kwargs["f"] / 2), name="freq")

A = yield Prior(tfpd.Uniform(0.1 * kwargs["span"], 2 * kwargs["span"]), name="A")
t0 = yield Prior(
tfpd.Uniform(
kwargs["Times"][0] - 0.1 * kwargs["T"], kwargs["Times"][-1] + 0.1 * kwargs["T"]
),
name="t0",
)
phi = yield Prior(tfpd.Uniform(2 * jnp.exp(-2), 2 * jnp.exp(4)), name="phi")
delta = yield Prior(tfpd.Uniform(0, kwargs["Times"][-1] / 2), name="delta")

return arn, crn, aqpo, cqpo, freq, A, t0, phi, delta

if (kernel_type == "QPO_plus_RN") & (mean_type == "fred"):
return fred_QPOprior_model


def get_likelihood(kernel_type, mean_type, **kwargs):
"""
Expand Down Expand Up @@ -534,6 +610,63 @@ def skewQPOlog_likelihood(arn, crn, aqpo, cqpo, freq, A, t0, sig1, sig2):
):
return skewQPOlog_likelihood

@jit
def fred_RNlog_likelihood(arn, crn, A, t0, phi, delta):
rnlikelihood_params = {
"arn": arn,
"crn": crn,
"aqpo": 0.0,
"cqpo": 0.0,
"freq": 0.0,
}

mean_params = {
"A": A,
"t0": t0,
"phi": phi,
"delta": delta,
}

kernel = get_kernel(kernel_type="RN", kernel_params=rnlikelihood_params)

# This could be causing problems
mean = get_mean(mean_type=mean_type, mean_params=mean_params)

# gp = GaussianProcess(kernel, kwargs["Times"], mean=mean)
gp = GaussianProcess(kernel, kwargs["Times"], mean_value=mean(kwargs["Times"]))
return gp.log_probability(kwargs["counts"])

if (kernel_type == "RN") & (mean_type == "fred"):
return fred_RNlog_likelihood

@jit
def fredQPOlog_likelihood(arn, crn, aqpo, cqpo, freq, A, t0, phi, delta):
qpolikelihood_params = {
"arn": arn,
"crn": crn,
"aqpo": aqpo,
"cqpo": cqpo,
"freq": freq,
}

mean_params = {
"A": A,
"t0": t0,
"phi": phi,
"delta": delta,
}

kernel = get_kernel(kernel_type="QPO_plus_RN", kernel_params=qpolikelihood_params)

mean = get_mean(mean_type=mean_type, mean_params=mean_params)

# gp = GaussianProcess(kernel, kwargs["Times"], mean=mean)
gp = GaussianProcess(kernel, kwargs["Times"], mean_value=mean(kwargs["Times"]))
return gp.log_probability(kwargs["counts"])

if (kernel_type == "QPO_plus_RN") & (mean_type == "fred"):
return fredQPOlog_likelihood


class GPResult:
"""
Expand Down

0 comments on commit c0019f9

Please sign in to comment.