Skip to content

We propose a novel method of fine-tuning the model for a particular downstream task, which proves to be more efficient and generalizable. We show that in an example of a fake news detection task, utilizing three distinct datasets and outperforming the baseline model in both the same dataset and cross-dataset zero-shot test.

Notifications You must be signed in to change notification settings

StepanTita/cam-bert

Repository files navigation

Space Fake

Fake

Data (20k): https://www.kaggle.com/c/fake-news/data?select=train.csv

Model Epochs Train Params loss accuracy cs accuracy f1 cs f1 precision recall
DistilBERT 0? 592130 0.6182 0.7478 N/A 0.7372 N/A 0.8549 0.5707
Space-DistilBERT 0? 197122 (128) 0.5986 0.7407 0. 0.7281 0. 0.8602 0.5481
Space-DistilBERT 0? 394242 (256) 0.5714 0.7655 0. 0.7578 0. 0.8566 0.6133

Fake 2 (not used since mainly a subset of Fake 1)

Data (6k): https://www.kaggle.com/datasets/rajatkumar30/fake-news

Model Train Params loss accuracy cs accuracy f1 cs f1 precision recall
DistilBERT 592130 0.6453 0.7572 N/A 0.7567 N/A 0.7848 0.7106
Space-DistilBERT 197122 (128) 0.6356 0.7749 0. 0.7691 0. 0.9069 0.6142
Space-DistilBERT 394242 (256) 0.6113 0.7976 0. 0.7942 0. 0.9040 0.6673

Zero-Shot

(train on 20k)

Model Train Params loss accuracy f1 precision recall
DistilBERT 592130 0.6287 0.7704 0.7704 0.7820 0.7494
Space-DistilBERT 197122 (128) 0.6175 0.7313 0.7231 0.8521 0.5591
Space-DistilBERT 394242 (256) 0.6014 0.7501 0.7467 0.8246 0.6346

Covid Fake News Data

Model Epochs Train Params loss accuracy cs accuracy f1 cs f1 precision recall Inter-space weight Intra-space weight
DistilBERT 5 592130 0.6287 0.8107 N/A 0.8027 N/A 0.9462 0.6392 N/A N/A
DistilBERT 750/1800 592130 0.1572 0.9313 N/A 0.9310 N/A 0.9431 0.9108 N/A N/A
Space-DistilBERT 1450/1800 6162 (4) 0.3134 0.9285 0.8706 0.9283 0.8690 0.9348 0.9137 0.1 1e-5
Space-DistilBERT 1450/1800 197122 (128) 0.3645 0.9304 0.7850 0.9302 0.7799 0.9333 0.9196 0.1 1e-5
Space-DistilBERT 5 394242 (256) 0.5810 0.7962 0. 0.7867 0. 0.9371 0.6137 0 0
Space-DistilBERT 5 788482 (512) 0.5550 0.7888 0. 0.7834 0. 0.8622 0.6627 0 0
Space-DistilBERT 5 788482 (512) 0.7514 0.7929 0. 0.7875 0. 0.8712 0.6637 0.1 0
Space-BERT 70 197122 (128) 0.2498 0.8957 0. 0.8950 0. 0.9217 0.8539 0 0
Space-BERT 70 6162 (4) 0.5506 0.7991 0. 0.7935 0. 0.8831 0.6667 0 0
Space-BERT 500 4622 (3) 0.4145 0.8995 0.8860 0.8988 0.8844 0.9305 0.8529 0.1 1e-5
Space-BERT 500 4622 (3) 0.2780 0.9051 0.4453 0.9045 0.4438 0.9295 0.8667 0 0
Space-BERT 250 98562 (64) 0.3907 0.9182 0.7976 0.9179 0.7905 0.9316 0.8941 0.1 1e-5
BERT 250 1538 0.5175 0.7897 N/A 0.7861 N/A 0.8376 0.6931 N/A N/A
BERT 5 108311810 0.0846 0.9752 N/A 0.9752 N/A 0.9736 0.9745 N/A N/A
BERT 50 1538 0.6338 0.7145 N/A 0.6966 N/A 0.7528 0.7047 N/A N/A
Space-BERT 50 4622 (3) 0.7875 0.7949 0.5234 0.7828 0.3436 0.8478 0.7855 0.1 1e-5
Space-BERT 50 98562 (64) 0.5877 0.8645 0.7743 0.8627 0.7637 0.8725 0.8610 0.1 1e-5
Space-BERT 50 197122 (128) 0.5727 0.8808 0.6528 0.8797 0.5967 0.8859 0.8782 0.1 1e-5

Notes: for the journal version we want to prove that either we are better with short training and eventually, or we are better eventually. We need to present the results for both cases. For the small fake news dataset, we need to show that we are better with at least one of the two training.

Zero-Shot with CS Loss

(test on 6k) (this is a data leakage) these results are cross-dataset without any specific topic

Model Epochs Train Params loss accuracy cs accuracy f1 cs f1 precision recall Inter-space weight Intra-space weight
BERT 50 1538 0.6544 0.6230 N/A 0.6028 N/A 0.7227 0.3979 N/A N/A
Space-BERT 50 4622 (3) 0.5722 0.7679 0.5958 0.7657 0.5902 0.8322 0.6707 0.1 1e-5
Space-BERT* 50 98562 (64) 0.4534 0.7975 0.6148 0.7974 0.5809 0.8040 0.7860 0.1 1e-5
Space-BERT 50 197122 (128) 0.4567 0.7964 0.5863 0.7963 0.5299 0.7822 0.8208 0.1 1e-5

this is after intersection removal:

Model Epochs Train Params loss accuracy cs accuracy f1 cs f1 precision recall Inter-space weight Intra-space weight
BERT 50 1538 0.6035 0.7736 N/A 0.6044 N/A 0.5985 0.6132 N/A N/A
Space-BERT 50 4622 (3) 0.5544 0.8292 0.5154 0.7180 0.4711 0.6985 0.7515 0.1 1e-5
Space-BERT 50 98562 (64) 0.4666 0.7997 0.8071 0.7069 0.6153 0.6847 0.7798 0.1 1e-5
Space-BERT 50 197122 (128) 0.5079 0.7750 0.8201 0.6892 0.5904 0.6729 0.7816 0.1 1e-5

* - our assumption was right, the model with less parameters but higher CS scores is better in terms of generalization

(test on covid-fake) these results are cross-dataset with specific (covid) topic

Model Epochs Train Params loss accuracy cs accuracy f1 cs f1 precision recall Inter-space weight Intra-space weight
BERT 50 1538 0.7692 0.4763 N/A 0.3308 N/A 0.4762 0.9889 N/A N/A
Space-BERT 50 4622 (3) 0.9535 0.4716 0.4766 0.3215 0.3233 0.4740 0.9882 0.1 1e-5
Space-BERT 50 98562 (64) 2.1427 0.4597 0.4709 0.3169 0.3214 0.4675 0.9618 0.1 1e-5
Space-BERT 50 197122 (128) 2.5363 0.4530 0.4092 0.3149 0.3116 0.4638 0.9461 0.1 1e-5

Cross-dataset benchmarking

Dataset Total true news Total fake news Images used Public availability
FakeCovid (twitter) 3360 3060 No Yes
LIAR (multi-label) 6400 6400 No Yes
LIAR (binary-label) 6400 6400 No Yes
Fake News Kaggle Competition 10387 10413 No Yes
FakeNewsNet 18,000 6,000 Yes Yes

Kaggle Fake News Competition

Model Epochs Train Params loss accuracy cs accuracy f1 cs f1 precision recall Inter-space weight Intra-space weight
BERT 50 1538 0.6251 0.6550 N/A 0.6337 N/A 0.7400 0.4319 N/A N/A
Space-BERT 50 4622 (3) 0.7444 0.8069 0.6408 0.8030 0.6396 0.8769 0.6946 0.1 1e-5
Space-BERT 50 98562 (64) 0.5305 0.8685 0.6834 0.8672 0.6497 0.9132 0.8018 0.1 1e-5
Space-BERT 50 197122 (128) 0.5016 0.8868 0.6436 0.8859 0.5900 0.9228 0.8334 0.1 1e-5

LIAR (multi-label)

Model Epochs Train Params loss accuracy cs accuracy f1 cs f1 precision recall Inter-space weight Intra-space weight
BERT 50 4614 1.7426 0.2221 N/A 0.1211 N/A 0.1261 0.1815 N/A N/A
Space-BERT 50 13938 (3) 2.2877 0.2362 0.1824 0.1540 0.1079 0.1542 0.1977 0.1 1e-5
Space-BERT 50 297222 (64) 2.3192 0.2580 0.2362 0.2034 0.1590 0.2201 0.2227 0.1 1e-5
Space-BERT 50 594438 (128) 2.3651 0.2572 0.2081 0.2120 0.1267 0.2527 0.2248 0.1 1e-5

LIAR (binary-label)

Model Epochs Train Params loss accuracy cs accuracy f1 cs f1 precision recall Inter-space weight Intra-space weight
BERT 50 1538 0.7026 0.5666 N/A 0.3617 N/A 0.2833 0.5000 N/A N/A
Space-BERT 50 4622 (3) 0.8476 0.5900 0.5838 0.5280 0.5825 0.5778 0.5515 0.1 1e-5
Space-BERT 50 98562 (64) 0.8591 0.6267 0.5877 0.6002 0.5855 0.6185 0.6031 0.1 1e-5
Space-BERT 50 197122 (128) 0.8747 0.6251 0.5744 0.5971 0.4194 0.6170 0.6007 0.1 1e-5

FakeNewsNet (GossipCop)

Model Epochs Train Params loss accuracy cs accuracy f1 cs f1 precision recall Inter-space weight Intra-space weight
BERT 50 1538 0.5480 0.7566 N/A 0.4307 N/A 0.3783 0.5000 N/A N/A
Space-BERT 50 4622 (3) 0.7111 0.7575 0.2620 0.4344 0.2238 0.8786 0.5017 0.1 1e-5
Space-BERT 50 98562 (64) 0.6771 0.7933 0.6378 0.6620 0.6037 0.7275 0.6427 0.1 1e-5
Space-BERT 50 197122 (128) 0.6847 0.7987 0.7143 0.6776 0.6361 0.7353 0.6573 0.1 1e-5

FakeNewsNet (PolitiFact + GossipCop)

Model Epochs Train Params loss accuracy cs accuracy f1 cs f1 precision recall Inter-space weight Intra-space weight
BERT 50 1538 0.5502 0.7548 N/A 0.4302 N/A 0.3774 0.5000 N/A N/A
Space-BERT 50 4622 (3) 0.7124 0.7557 0.2732 0.4336 0.2400 0.8777 0.5016 0.1 1e-5
Space-BERT 50 98562 (64) 0.6754 0.7955 0.6468 0.6654 0.6090 0.7359 0.6453 0.1 1e-5
Space-BERT 50 197122 (128) 0.6826 0.8028 0.7131 0.6833 0.6302 0.7475 0.6616 0.1 1e-5

FakeNewsNet (GossipCop predict> Covid Fake)

Model Epochs Train Params loss accuracy cs accuracy f1 cs f1 precision recall Inter-space weight Intra-space weight
BERT 50 1538 0.8384 0.5234 N/A 0.3436 N/A 0.2616 0.5000 N/A N/A
Space-BERT 50 4622 (3) 0.7862 0.5234 0.6145 0.3436 0.6052 0.2617 0.5000 0.1 1e-5
Space-BERT 50 98562 (64) 0.8823 0.5375 0.6064 0.3806 0.5874 0.6911 0.5151 0.1 1e-5
Space-BERT 50 197122 (128) 0.9444 0.5373 0.5691 0.3797 0.4712 0.6954 0.5149 0.1 1e-5

FakeNewsNet (GossipCop predict> PolitiFact)

Model Epochs Train Params loss accuracy cs accuracy f1 cs f1 precision recall Inter-space weight Intra-space weight
BERT 50 1538 0.5990 0.5909 N/A 0.3714 N/A 0.2955 0.5000 N/A N/A
Space-BERT 50 4622 (3) 0.5621 0.5909 0.4403 0.3714 0.3699 0.2955 0.5000 0.1 1e-5
Space-BERT 50 98562 (64) 0.5385 0.6695 0.6259 0.6085 0.6258 0.6812 0.6181 0.1 1e-5
Space-BERT 50 197122 (128) 0.5312 0.6941 0.6468 0.6395 0.6155 0.7172 0.6447 0.1 1e-5

FakeNewsNet (PolitiFact + GossipCop predict> Covid Fake)

Model Epochs Train Params loss accuracy cs accuracy f1 cs f1 precision recall Inter-space weight Intra-space weight
BERT 50 1538 0.8171 0.5234 N/A 0.3436 N/A 0.2617 0.5000 N/A N/A
Space-BERT 50 4622 (3) 0.7652 0.5234 0.6024 0.3436 0.5881 0.2617 0.5000 0.1 1e-5
Space-BERT 50 98562 (64) 0.8256 0.5482 0.6191 0.4064 0.6116 0.6983 0.5265 0.1 1e-5
Space-BERT 50 197122 (128) 0.8719 0.5480 0.5956 0.4056 0.5354 0.7008 0.5263 0.1 1e-5

Ablation Study with inter-space and intra-space losses only

FakeNewsNet (PolitiFact + GossipCop)

Model Epochs Train Params loss accuracy cs accuracy f1 cs f1 precision recall Inter-space weight Intra-space weight
Space-BERT 10 4622 (3) 1.7721 0.7548 0.6196 0.4302 0.5962 0.3774 0.5000 1.0 1e-5
Space-BERT 10 98562 (64) 0.7079 0.7815 0.7055 0.6016 0.6325 0.7203 0.5928 1.0 1e-5
Space-BERT 10 197122 (128) 0.6910 0.7973 0.7321 0.6703 0.6370 0.7350 0.6500 1.0 1e-5
Space-BERT 10 4622 (3) 1.9239 0.7548 0.7152 0.4301 0.6437 0.3774 0.5000 1.0 0
Space-BERT 10 98562 (64) 1.9734 0.2565 0.6616 0.2145 0.6254 0.5756 0.5056 1.0 0
Space-BERT 10 197122 (128) 1.9751 0.7349 0.7637 0.4343 0.6567 0.4329 0.4909 1.0 0

FakeNewsNet (GossipCop)

Model Epochs Train Params loss accuracy cs accuracy f1 cs f1 precision recall Inter-space weight Intra-space weight
Space-BERT 10 4622 (3) 1.9304 0.7566 0.7053 0.4307 0.6387 0.3783 0.5000 1.0 1e-5
Space-BERT 10 98562 (64) 2.0755 0.2818 0.6857 0.2538 0.6366 0.5683 0.5175 1.0 1e-5
Space-BERT 10 197122 (128) 2.0751 0.7448 0.7442 0.4436 0.6522 0.4861 0.4985 1.0 1e-5
Space-BERT 10 4622 (3) 1.9255 0.7566 0.7055 0.4307 0.6387 0.3783 0.5000 1.0 0
Space-BERT 10 98562 (64) 1.9739 0.2549 0.6761 0.2137 0.6361 0.5737 0.5057 1.0 0
Space-BERT 10 197122 (128) 1.9754 0.7369 0.7651 0.4335 0.6659 0.4277 0.4905 1.0 0

FakeNewsNet (PolitiFact + GossipCop predict> Covid Fake)

Model Epochs Train Params loss accuracy cs accuracy f1 cs f1 precision recall Inter-space weight Intra-space weight
Space-BERT 10 4622 (3) 0.7046 0.5234 0.5379 0.3436 0.3830 0.2617 0.5000 1.0 1e-5
Space-BERT 10 98562 (64) 0.6888 0.4761 0.6260 0.3238 0.6039 0.4200 0.4993 1.0 1e-5
Space-BERT 10 197122 (128) 0.7055 0.4338 0.5778 0.3467 0.4927 0.3457 0.4177 1.0 1e-5
Space-BERT 10 4622 (3) 0.7034 0.5234 0.5384 0.3436 0.3849 0.2617 0.5000 1.0 0
Space-BERT 10 98562 (64) 0.6915 0.4762 0.6305 0.3229 0.6049 0.3493 0.4995 1.0 0
Space-BERT 10 197122 (128) 0.7039 0.4349 0.5969 0.3252 0.5276 0.3042 0.4169 1.0 0

FakeNewsNet (GossipCop predict> PolitiFact)

Model Epochs Train Params loss accuracy cs accuracy f1 cs f1 precision recall Inter-space weight Intra-space weight
Space-BERT 10 4622 (3) 0.7034 0.5234 0.5292 0.3436 0.3606 0.2617 0.5000 1.0 1e-5
Space-BERT 10 98562 (64) 0.6892 0.4759 0.5967 0.3238 0.5549 0.4112 0.4991 1.0 1e-5
Space-BERT 10 197122 (128) 0.7052 0.4401 0.5543 0.3472 0.4312 0.3468 0.4234 1.0 1e-5
Space-BERT 10 4622 (3) 0.6918 0.4762 0.5947 0.3229 0.5399 0.3493 0.4995 1.0 0
Space-BERT 10 98562 (64) 0.7022 0.5234 0.5289 0.3436 0.3598 0.2617 0.5000 1.0 0
Space-BERT 10 197122 (128) 0.7037 0.4546 0.5653 0.3290 0.4510 0.3046 0.4353 1.0 0

Explanation Benchmark


Explanation:

  • Train the model on some dataset (e.g. Fake News Kaggle Competition, or Covid Fake News Dataset)
  • Let's embed the whole fact-checking dataset into the same space (not the embeddings, but the centroid of the embeddings).
  • Let's try to predict the news to be fake or true.
  • After we've predicted let's use the embedding centroid and extract k nearest neighbors from the knowledge base.
  • Let's see how well this nearest neighbors match the original fact-checking articles (this we will measure by max/average cosine/euclidian similarity of the neighbors embedding with the original fact-checking articles, and by the number of exact matches, e.g. recall and precision).

Notes: we should actually compare this with S-BERT. For now we just use Mean of BERT embeddings as a centroid. We should also think how we can deal with the fact that to use concept space similarity we need to use N knowledge bases - one for each label. Since otherwise vectors that fall in different spaces will be compared (since we force them to be orthogonal only with those from the different concept spaces).


tp / (tp + fp) = precision (how well we identify true explanation) tp / (tp + fn) = recall (how well we distinguish true explanation from false explanation)

Model Train Dataset Epochs Train Params Mean Cosine Similarity Max Cosine Similarity Mean Euclidean Distance Max Euclidean Distance precision recall
BERT ✅ Covid Fake 50 1538 0. 0. 0. 0. 0. 0.
BERT ✅ Fake News Kaggle 50 1538 0. 0. 0. 0. 0. 0.
Space-BERT ✅ Covid Fake 50 4622 (3) 0. 0. 0. 0. 0. 0.
Space-BERT ✅ Covid Fake 50 98562 (64) 0. 0. 0. 0. 0. 0.
Space-BERT ✅ Covid Fake 50 197122 (128) 0. 0. 0. 0. 0. 0.
Space-BERT ✅ Fake News Kaggle 50 4622 (3) 0. 0. 0. 0. 0. 0.
Space-BERT ✅ Fake News Kaggle 50 98562 (64) 0. 0. 0. 0. 0. 0.
Space-BERT ✅ Fake News Kaggle 50 197122 (128) 0. 0. 0. 0. 0. 0.

Some tests that are used to make sure that model works as expected

IMDB

Experiment Epochs Train Params Loss Accuracy F1-score (macro) Precision Recall Inter-space weight Intra-space weight
Space-DistilBERT (CE + inter-space loss) 5 4622 0.8804 0.6141 0.5587 0.8957 0.2594 0 0
Space-DistilBERT (CE loss) 5 4622 0.4883 0.8080 0.8079 0.8262 0.7808 0 0
Space-DistilBERT (CE loss) 5 197122 0.3855 0.8322 0.8320 0.8093 0.8663 0 0
Space-DistilBERT (CE + inter-space loss) 5 197122 0.7847 0.7890 0.7889 0.8016 0.7687 0.1 0
DistilBERT-base-cased 5 592130 0.4612 0.7852 0.7819 0.8799 0.6614 N/A N/A

Paper tables:

Same dataset benchmarking

Data Model # Latent Dimensions loss accuracy cs accuracy f1 cs f1 precision recall
Fake COVID News BERT N/A 0.6338 0.7145 N/A 0.6966 N/A 0.7528 0.7047
Space-BERT 3 0.7875 0.7949 0.5234 0.7828 0.3436 0.8478 0.7855
Space-BERT 64 0.5877 0.8645 0.7743 0.8627 0.7637 0.8725 0.8610
Space-BERT 128 0.5727 0.8808 0.6528 0.8797 0.5967 0.8859 0.8782
Liar (multi-label) BERT N/A 1.7426 0.2221 N/A 0.1211 N/A 0.1261 0.1815
Space-BERT 3 2.2877 0.2362 0.1824 0.1540 0.1079 0.1542 0.1977
Space-BERT 64 2.3192 0.2580 0.2362 0.2034 0.1590 0.2201 0.2227
Space-BERT 128 2.3651 0.2572 0.2081 0.2120 0.1267 0.2527 0.2248
Liar (binary-label) BERT N/A 0.7026 0.5666 N/A 0.3617 N/A 0.2833 0.5000
Space-BERT 3 0.8476 0.5900 0.5838 0.5280 0.5825 0.5778 0.5515
Space-BERT 64 0.8591 0.6267 0.5877 0.6002 0.5855 0.6185 0.6031
Space-BERT 128 0.8747 0.6251 0.5744 0.5971 0.4194 0.6170 0.6007
Kaggle Fake News BERT N/A 0.6251 0.6550 N/A 0.6337 N/A 0.7400 0.4319
Space-BERT 3 0.7444 0.8069 0.6408 0.8030 0.6396 0.8769 0.6946
Space-BERT 64 0.5305 0.8685 0.6834 0.8672 0.6497 0.9132 0.8018
Space-BERT 128 0.5016 0.8868 0.6436 0.8859 0.5900 0.9228 0.8334
Fake News Net BERT N/A 0.5502 0.7548 N/A 0.4302 N/A 0.3774 0.5000
Space-BERT 3 0.7124 0.7557 0.2732 0.4336 0.2400 0.8777 0.5016
Space-BERT 64 0.6754 0.7955 0.6468 0.6654 0.6090 0.7359 0.6453
Space-BERT 128 0.6826 0.8028 0.7131 0.6833 0.6302 0.7475 0.6616

Cross-dataset benchmarking

(Train) -> (Test) Model # Dims. loss accuracy cs accuracy f1 cs f1 precision recall
(GossipCop) -> (CovidFake) BERT N/A 0.8384 0.5234 N/A 0.3436 N/A 0.2616 0.5000
Space-BERT 3 0.7862 0.5234 0.6145 0.3436 0.6052 0.2617 0.5000
Space-BERT 64 0.8823 0.5375 0.6064 0.3806 0.5874 0.6911 0.5151
Space-BERT 128 0.9444 0.5373 0.5691 0.3797 0.4712 0.6954 0.5149
(GossipCop) -> (Politifact) BERT N/A 0.5990 0.5909 N/A 0.3714 N/A 0.2955 0.5000
Space-BERT 3 0.5621 0.5909 0.4403 0.3714 0.3699 0.2955 0.5000
Space-BERT 64 0.5385 0.6695 0.6259 0.6085 0.6258 0.6812 0.6181
Space-BERT 128 0.5312 0.6941 0.6468 0.6395 0.6155 0.7172 0.6447
(FakeNewsNet) -> (CovidFake) BERT N/A 0.8171 0.5234 N/A 0.3436 N/A 0.2617 0.5000
Space-BERT 3 0.7652 0.5234 0.6024 0.3436 0.5881 0.2617 0.5000
Space-BERT 64 0.8256 0.5482 0.6191 0.4064 0.6116 0.6983 0.5265
Space-BERT 128 0.8719 0.5480 0.5956 0.4056 0.5354 0.7008 0.5263
(Train) -> (Test) Model # Dims. loss accuracy cs accuracy f1 cs f1
(Gossip) -> (CovidFake) BERT N/A 0.8384 0.5234 N/A 0.3436 N/A
Space-BERT 3 0.7862 0.5234 0.6145 0.3436 0.6052
Space-BERT 64 0.8823 0.5375 0.6064 0.3806 0.5874
Space-BERT 128 0.9444 0.5373 0.5691 0.3797 0.4712
(Gossip) -> (Politifact) BERT N/A 0.5990 0.5909 N/A 0.3714 N/A
Space-BERT 3 0.5621 0.5909 0.4403 0.3714 0.3699
Space-BERT 64 0.5385 0.6695 0.6259 0.6085 0.6258
Space-BERT 128 0.5312 0.6941 0.6468 0.6395 0.6155
(NewsNet) -> (CovidFake) BERT N/A 0.8171 0.5234 N/A 0.3436 N/A
Space-BERT 3 0.7652 0.5234 0.6024 0.3436 0.5881
Space-BERT 64 0.8256 0.5482 0.6191 0.4064 0.6116
Space-BERT 128 0.8719 0.5480 0.5956 0.4056 0.5354

Ablation Study

Same dataset inter-space and intra-space loss ablation study

Data Model # Latent Dimensions loss accuracy cs accuracy f1 cs f1 precision recall
GossipCop Space-BERT 3 1.9304 0.7566 0.7053 0.4307 0.6387 0.3783 0.5000
Space-BERT 64 2.0755 0.2818 0.6857 0.2538 0.6366 0.5683 0.5175
Space-BERT 128 2.0751 0.7448 0.7442 0.4436 0.6522 0.4861 0.4985
Fake News Net Space-BERT 3 1.7721 0.7548 0.6196 0.4302 0.5962 0.3774 0.5000
Space-BERT 64 0.7079 0.7815 0.7055 0.6016 0.6325 0.7203 0.5928
Space-BERT 128 0.6910 0.7973 0.7321 0.6703 0.6370 0.7350 0.6500

Cross-dataset inter-space and intra-space loss ablation study

(Train) -> (Test) Model # Dims. loss accuracy cs accuracy f1 cs f1 precision recall
(GossipCop) -> (CovidFake) Space-BERT 3 0.7034 0.5234 0.5292 0.3436 0.3606 0.2617 0.5000
Space-BERT 64 0.6892 0.4759 0.5967 0.3238 0.5549 0.4112 0.4991
Space-BERT 128 0.7052 0.4401 0.5543 0.3472 0.4312 0.3468 0.4234
(FakeNewsNet) -> (CovidFake) Space-BERT 3 0.7046 0.5234 0.5379 0.3436 0.3830 0.2617 0.5000
Space-BERT 64 0.6888 0.4761 0.6260 0.3238 0.6039 0.4200 0.4993
Space-BERT 128 0.7055 0.4338 0.5778 0.3467 0.4927 0.3457 0.4177

About

We propose a novel method of fine-tuning the model for a particular downstream task, which proves to be more efficient and generalizable. We show that in an example of a fake news detection task, utilizing three distinct datasets and outperforming the baseline model in both the same dataset and cross-dataset zero-shot test.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published